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1 Introduction

Perhaps the single characteristic that most distinguishes agriculture from other forms of produc-

tion is its spatial dimension. The spatial distribution of production is a key determinant of the

structure of markets for the procurement of farm products, the competitiveness of these markets,

the efficiency with which farm products are assembled, and the determination of prices, outputs

and distribution of welfare in them (Hamilton and Sunding, 2020; Jung et al., 2021) .

Although the economic importance of the spatial dimension of agricultural markets has

been acknowledged and studied at least since von Thünen (1826),1 our understanding of the

implications of spatially dispersed farm production for the location of processing/packing firms

and the nature of competition in farm-product procurement is of much more recent vintage.

Stripped to its essence, the issue is that costly transport of farm products due to their inherent

bulkiness and perishability incentivizes processing/packing firms to locate in close proximity to

producing areas and limits farmers’ access to spatially distributed buyers, creating procurement

markets that are natural oligopsonies (Faminow and Benson, 1990; Rogers and Sexton, 1994;

Hamilton and Sunding, 2020).

Researchers have sought to understand two questions that are fundamental to determining

prices and outputs and the competitiveness of these markets: (i) where within the producing

region will buying firms choose to locate, and (ii) what spatial-pricing strategies will they adopt?

Despite a number of contributions in recent decades to addressing these questions, a key limitation

of all prior work is that it has addressed one question or the other, while treating the unaddressed

question as a given,2 even though the two decisions are quite clearly interrelated and chosen

1 The study of optimal processing plant locations has a rich history in agricultural economics, with key examples
being Stollsteimer (1963), King and Logan (1964), Polopolus (1965), and Hilger et al. (1977). These studies utilized
programming models to derive least-cost plant locations, given plant economies of scale and shipment costs for both
the farm and processed products. Studies tended to find significant economies of scale in processing, leading to
few plants in the least-cost configuration. Although some authors noted the implications of number and location of
processing firms for possible market power (e.g., Stollsteimer et al. (1975), p. 113) none made any attempt to account
for it in their analysis. See Lucas and Chhajed (2004) for a review of this literature.

2 For example, studies of firms’ choice of spatial pricing policy have located buying firms exogenously at the
endpoints of Hotelling’s line (Zhang and Sexton, 2001; Graubner et al., 2011), while studies of firm location have
typically assumed free-on-board (FOB) pricing (Fousekis, 2015).
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jointly by a firm as defining elements of its product-procurement strategy.3

The goal of this paper is to surmount this central limitation of the literature and study firms’

geographic-location and pricing-strategy decisions jointly. In so doing, we hope to contribute to

understanding of the efficiency of farm-product assembly and processing and of the importance

of buyer power in agricultural product procurement markets, topics of longstanding and ongoing

interest in both western and developing economies.4

2 Background and Related Literature

The essential reason for the failure of the prior literature to address location and pricing decisions

jointly is the analytical complexity involved in introducing spatial considerations into a model

of market competition. The goal of such models is to determine Nash equilibrium strategies for

buying firms, but the models quickly become intractable and analytical solutions are attainable

only if supported by strong and limiting assumptions. Further, these models are plagued by

problems of nonexistence of equilibrium in pure strategies in some cases (d’Aspremont et al.,

1979; Schuler and Hobbs, 1982; Zhang and Sexton, 2001),5 and a multiplicity of asymmetric

3 The same limitation applies to a parallel set of studies that have examined location and pricing by sellers operating
on Hotelling’s line. Key early examples include Hotelling (1929) himself, who believed erroneously that FOB-pricing
firms would each locate at the market center (a result known as minimum differentiation), and d’Aspremont et al.
(1979), who corrected Hotelling, demonstrated the nonexistence of pure strategy equilibrium in Hotelling’s base
model, and established maximum differentiation (location at the market endpoints) as the location equilibrium with
FOB pricing and quadratic transport costs. More recent examples are Hinloopen and van Marrewĳk (1999), who
established that neither maximum nor minimum differentiation prevail in general as location equilibria with FOB
pricing when a finite consumer reservation price is introduced into the inelastic-demand model of Hotelling, and
van Leeuwen and Lĳesen (2016) who used agent-based simulations to investigate Hotelling’s game under quadratic
transport costs and FOB-pricing. Other work has addressed seller location assuming discriminatory pricing (e.g.,
Lederer and Hurter, 1986 and Hamilton et al., 1989). Summaries of this literature are provided by Thisse and Norman
(1994), Greenhut and Norman (1995), and Biscaia and Mota (2013).

4 Arguably intermediaries’ buyer power over farmers has become the central market structure policy issue in
agricultural supply chains for most countries, supplanting in importance concerns about food manufacturers’ and
retailers’ abilities to raise prices to consumers (Sexton and Xia, 2018; Nes et al., 2021).

5 Nonexistence of pure-strategy equilibria is due to “market stealing,” the phenomenon whereby, with linear
transport costs and symmetric pricing strategies, one firm, by offering a price sufficiently higher than its rival, can
capture the entire market area it is willing to serve at that price, causing discontinuity in the payoff functions and
pure-strategy equilibria fail to exist (Dasgupta and Maskin, 1986).
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equilibria in others (Mérel and Sexton, 2010).6

We eschew the quest for analytical solutions in favor of a framework that relies upon com-

putational economics methods. In particular, we identify firms’ decisions regarding location and

price policy by genetic algorithm (GA) learning of equilibrium strategies within an agent-based

model (ABM). The use of ABMs in agricultural economics gained a foothold in the last 25 years,

with Balmann (1997) and Berger (2001) representing prominent early applications. Kremmy-

das et al. (2018) and Huber et al. (2018) provide recent reviews of agent-based approaches in

agricultural economics.

Although most ABMs have been based on mathematical programming or ad-hoc decision

rules, some authors have employed flexible and powerful optimization techniques, including the

application of artificial intelligence methods, to study decision problems of high complexity

within ABMs (Zhang and Brorsen, 2010; Boyer and Brorsen, 2013; Feil et al., 2013). We

follow this approach, in particular Graubner et al. (2011), and combine an ABM structure with

an artificial intelligence technique (GAs), which enables us to investigate spatial competition

between buyers of an agricultural product as a non-cooperative game within a very general

framework and to surmount the aforementioned analytical difficulties. This approach leads

to surprising results that stand in contrast to much of the conventional wisdom in the spatial

economics literature.

Our model follows most previous studies of firm location decisions by focusing on duop-

sony/duopoly competition and location along Hotelling’s line or street. However, instead of

assuming a particular pricing policy, we allow buying firms to adopt any linear pricing strat-

egy consisting of paying a fixed “mill” price at the processing-plant gate, plus some fraction,

U ∈ [0, 1] of the costs of transporting the product from farm gate to plant gate. Although most

studies of spatial agricultural markets have assumed U = 1, i.e., so-called free-on-board (FOB)

pricing wherein sellers are responsible for all transport costs, departures from FOB pricing are

6 Mérel and Sexton (2010) show that a continuum of asymmetric Nash equilibria exist with FOB pricing in market
settings that they termed “weak duopoly”.
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common in reality, including full buyer absorption of transport costs, i.e., U = 0, known as

uniform-delivered (UD) pricing (Durham et al., 1996; Alvarez et al., 2000; Tribl et al., 2017). In-

stances of pricing policies between the extremes of FOB and UD pricing, i.e., U ∈ (0, 1), are also

common and easy for buying firms to implement through offering farmers hauling allowances

(Ali, 2004; Meyer, 2005), operating receiving stations at intermediate locations,7 or directly

providing the farm-to-plant transportation and billing farmers for only a fraction, 0 < U < 1, of

the cost.

Ourmodel also conforms to important real-world settings, especially in developing countries,

where buyers (e.g., traders) procure farm product at seller (e.g., village) locations and pay costs

to transport the product to processing, packing, or export locations (Schipmann and Qaim, 2010;

Kopp and Brummer, 2017). Such buyers are able to offer an unique purchase price at each

location, with price decreasing in distance to the processing facility or export terminal, so as to

conform in practice to our pricing schedule and an U ∈ (0, 1).

FOB pricing is nondiscriminatory because, although all sellers obtain a differentiated net

price based upon their location relative to the buyer, the price differences equate the transport

cost differences between locations. Any departure from FOB pricing represents a form of third-

degree price discrimination against farmers located nearby the processing or packing facility,

with UD pricing representing a particularly extreme form of price discrimination.8

Although the choice between FOB andUDpricing for duopoly sellers located at the endpoints

of Hotelling’s line had been studied for the case of inelastic-demand consumers arrayed uniformly

along the line (Kats and Thisse, 1989; Espinosa, 1992), Zhang and Sexton (2001) were the first

to study the problem in a procurement market, where farmers had (unit) elastic supply functions.

They found that mutual FOB pricing emerged as equilibrium strategies when spatial competition

was intense (i.e., transport costs were low relative to the value of the farm product), mixed pricing

7 Receiving stations are especially common in the developing world for commodities such as coffee andmilk (Dries
and Noev, 2006; Ndahetuye et al., 2020). For example in Latin America they are known as centro de acopio, which
translates to “collection center.”

8 The nondiscriminatory character of FOB pricing has caused competition authorities to regard it (incorrectly) as
competitive pricing and to view UD pricing with suspicion (Zhang and Sexton, 2001).
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strategies (UD for one firm, FOB for the other) emerged undermoderate competition, withmutual

UD pricing emerging only when relative transport costs were high and competition was weak.

Fousekis (2011) revisited the problem in a mixed duopsony setting, with competition between

one invester-owned firm and one cooperative. The cooperative, operating with a zero-profit

objective, is an aggressive competitor in this model, leading to results that stand in considerable

contrast to Zhang and Sexton (2001)—UD (FOB) pricing emerges when relative transport costs

are low (high).

Using GA optimization, Graubner et al. (2011) were able to study a richer set of spatial

pricing options than just UD and FOB pricing for buying firms located at the endpoints of

Hotelling’s street. They adopted the aforementioned linear pricing schedule and showed that

price discrimination in the form of either UD pricing or partial freight cost absorption emerge

as equilibrium pricing strategies in the duopsony case with maximum differentiation, but FOB

pricing does not.

The infrequent emergence of FOB pricing as equilibrium behavior in these studies might call

into question the relevance of the many studies of farm-product procurement that invoke FOB

pricing as a foundational assumption. However, the policy relevance of these conclusions may

itself be challenged by the restrictive assumption that buyers are located at the market endpoints

and the fact that casual empiricism reveals frequent examples of FOB pricing in farm product

procurement markets (e.g., Jung et al., 2021).

Although maximum differentiation minimizes price competition between firms, such loca-

tions are inefficient from the perspective of minimizing transport costs, and some authors have

considered alternative market structures. Examples include Alvarez et al. (2000), who investi-

gated a milk market duopsony under UD pricing and an unbounded line market, Sesmero et al.

(2015), who considered a third buyer at the market center in a FOB-pricing model of a spatial

market for corn stover, and Wang et al. (2020) who analyzed alternative market structures in a

two-dimensional FOB pricing model of procurement markets for corn ethanol plants. In each of

these contributions, however, firm locations and price policies were treated as exogenous.

6



Neither FOB pricing nor maximum differentiation maximize buyer profits for most spatial

competition settings, raising the question of how behavior is affected if firms are able to choose

both their location and pricing policy, especially if the denizens along Hotelling’s street, whether

they be consumers or farmers, have elastic responses to price. We seek to answer this question

in the following sections, finding results at considerable variance to conventional wisdom and

practice. For example, neither maximum nor minimum differentiation ever represent equilibrium

behavior in the generalized setting of our model and locations and pricing strategies that are

chosen tend to result in greater competition and economic efficiency than is found in prior work.

Pricing strategies close to FOB pricing re-emerge as equilibrium strategies in this generalized

framework in settings where competition is intense because FOB pricing limits direct price

competition to the market boundary (Zhang and Sexton, 2001), a key consideration once firms

are no longer constrained to locate at the competition-stifling endpoints of Hotelling’s line.

3 Model Framework

Two buyers, denoted as A and B, are free to choose a plant location on a line market of unit

length (G = [0, 1]), with G� = [0, 1/2] and G� = [1/2, 1] indicating the location of A and B,

respectively. For example, locations G� = 0 and G� = 1would representmaximumdifferentiation,

while minimum differentiation would be represented by G� = G� = 1/2.

We assume a fixed rate of conversion from the farm input into the final product output,

and without further loss of generality set that conversion rate to one through appropriate choice

of measurement units so that one unit of the farm input is needed to produce one unit of the

processed output. Input buyers sell the final product in a perfectly competitive market, where Φ

is the constant price of the finished good.9 Processing/packing costs are constant, 2, per unit,

and we set the net price q = Φ − 2 = 1 via normalization. q is thus the “gross” marginal value

9 The assumption of perfect competition in output sales, while allowing buyer power in farm product procurement,
is realistic given that the finished product is typically much less bulky and perishable than the farm product and, thus,
sold in a geographic market that is much larger and subject to more competition than the procurement market.
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product of the farm input, i.e., the marginal value prior to accounting for shipment costs.

Farmers are uniformly distributed in the geographic space such that each location G accom-

modates exactly one seller of the farm product. Each has a common price-elastic supply function,

and the quantity of each input seller is determined by the price, ?, at her location, G:

@(G) = max{?8 (G), 0} with 8 = {�, �}. (1)

This supply function is unit elastic, and the absence of any slope parameter is simply a unit-

of-measurement choice and achieved without any further loss of generality.10 As Zhang and

Sexton (2001) noted, including price responsiveness of farmers in a product-procurement model

(consumers in a selling context) is important because otherwise pricing decisions are made

primarily from a competition perspective and without regard for their impact on farmer sales

(consumer purchases in the selling context), so long as the farmer (consumer) participates in the

market at all.

Transport costs are linear in distance with given transport rate C per unit of product and unit

of distance. Given the monetary normalization q = 1, the value of C is interpreted relative to q.

For example, if C = 1 and the farm product was transported |G − G8 | = 0.25, then the transport

costs would represent 25% of the gross value of the farm product. In the prototype model with

maximum differentiation C represents the differentiation between the buying firms and, thus,

depicts the intrinsic competitiveness of the input procurement market, with C = 0 representing

undifferentiated buyers and perfect competition (i.e., Bertrand’s paradox) and sufficiently high

values of C enabling the buyers to act as isolated monopsonists (e.g., Zhang and Sexton, 2001).

Intermediate values of C characterize different intensities of oligopsony competition. Importantly,

however, when firms are free to choose locations within the market area, the product of C and the

distance between the firms, G� − G�, determines the intrinsic competitiveness of the market.

10 Assuming a unit elastic supply function is no more general than assuming a perfectly inelastic function, but is
undoubtedly much more realistic, especially over the length of run at issue in this paper wherein we study buying
firms’ joint location and pricing-strategy decisions. Within this decision horizon buying firms would surely consider
that farmers would have an elastic response to prices they encountered.

8



We define the price ?8 (G) offered by buyer 8 to the seller at location G as a function of the

mill price <8 and the portion U8 of the transport costs between 8’s location G8 and the seller’s

location G that is borne by the seller. Accordingly, we denote the triple W8 = (<8 , U8 , G8) as the

spatial price and location strategy of buyer 8 = {�, �}. The linear price schedule is:

?8 (G) =


<8 + U8C (G − G8), if G < G8 ,

<8 + U8C (G8 − G), if G ≥ G8 .
(2)

The local break-even price, 18 (G), is the price at each location that yields zero profits to the buyer:

18 (G) =


1 + C (G − G8), if G < G8 ,

1 + C (G8 − G), if G ≥ G8 .
(3)

Figure 1 illustrates ?8 (G) and 18 (G). Given the supply function (1), 8’s profit at seller location G

is:

c8 (G) = [18 (G) − ?8 (G)] ?8 (G). (4)

The buyer’s profit per unit at each location is represented by the vertical distance between 18 (G)

and ?8 (G) in figure 1. However, importantly, profit is also a function of the amount of farm

product supplied, ?8 (G), at the location, a factor ignored in the spatial models that assume

inelastic consumer demands or farmer supplies.

The profit is zero if the local price is zero, so no product is supplied, or if 18 (G) = ?8 (G).

Accordingly, the buyer will not serve locations outside the market radius A where:

A = min

{
<8

U8C

U8>0

,
1 − <8
(1 − U8)C

U<1

}
. (5)

The optimal price strategy for the monopsonist is (<" , U" ) = (1/2, 1/2), a result that can be

found analytically (see, e.g., Norman, 1981) and involves price discrimination, with partial freight

absorption (Löfgren, 1986). This result is known as optimal discriminatory (OD) pricing, and
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under OD pricing there is a unique location equilibrium known as the “touching equilibrium” for

C = 4, where firms locate at the quartiles of the market, G� = 1/4 and G� = 3/4, and market areas

“touch” at the market center, G = 1/2, with ?�(0) = ?� (1) = ?(1/2) = 0.11 This equilibrium is

illustrated in Figure 1.

Break-even price

Monopsony price

0 xA 1/2 xB 1

mA

1

mB

1

Figure 1: Touching Equilibrium (C = 4) with OD pricing (< = 1/2 and U = 1/2) and location at
the quartiles.

OD pricing maximizes both the market radius and the local profit (4). Location at the market

quartiles is also efficient in the sense of minimizing the total cost of transporting the farm product.

Complications arise, however, for lower transport costs because the potential market areas

of both buyers will overlap. Without further restrictions on the price or location strategies of

the buyers, there is a variety of possible competition scenarios, which may require alternative

formulations of the buyers’ profit functions. This, in turn, can cause discontinuous payoff

functions and non-existence of Nash equilibrium in pure strategies (d’Aspremont et al., 1979),

multiple Nash equilibria with asymmetric buyer strategies, (Mérel and Sexton, 2010) or inability

to obtain closed-form solutions (Osborne and Pitchik, 1987).

11 The touching equilibrium is derived for the seller case under FOB pricing by Economides (1984) and Hinloopen
and van Marrewĳk (1999).
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4 Simulation Model

We surmount these analytical complications by studying the spatial competition problem using

an agent-based framework that is able to capture the interactions among many heterogeneous

players (Tesfatsion, 2006). In particular, we build upon the Spatial Agent-based Competition

Model (SpAbCoM) developed by Graubner (2011). Within this model, genetic algorithms

(GAs) are applied to solve the decision problem of the buyers. GAs repeatedly have proven to

be successful in identifying equilibrium strategies in complex games and have been used over

a broad range of disciplines (Foster, 2001). Economic applications include Axelrod (1997),

Arifovic (1994), Price (1997), Dawid and Kopel (1998), Balmann and Happe (2001), Alemdar

and Sirakaya (2003), Haruvy et al. (2006), Graubner et al. (2011), and Feil et al. (2013).12

A GA is a stochastic, heuristic search method to find optimal or close-to-optimal solutions

in large decision or strategy spaces. In analogy to biological evolution, the GA is based on

the principle of the survival of the fittest (Dawid, 1999), i.e., good strategies are more likely

to be selected within the optimization procedure, while bad strategies become extinct. During

optimization, the GA enables the creation of new, potentially superior solutions, which makes

the GA efficient and robust, i.e., it minimizes both the dependency on the initial conditions and

makes GA optimization less vulnerable for a lock-in towards local optima than other numerical

methods.

In general, a GA converges over a sufficient number of iterations towards an equilibrium

in evolutionary stable strategies—a NE of the game if one exists (Price, 1997; Dawid, 1999).

Riechmann (2001) shows that GA optimization is a specific form of an evolutionary game, and

Son and Baldick (2004) demonstrate that co-evolutionary GAs overcome the problem of iterative

search algorithms, which may misidentify NE by following a local optimization path.

We use this approach and model the decision making of each buyer by the application of an

individual GA within a spatial competition setting. In adapting the simulation to fit the case at

12 Detailed discussions of GAs can also be found in Mitchell (1996) and Goldberg (1989).
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hand, we explicitly consider the spatial dimension of a market by an array of = = 400 equidistant

locations, each occupied by one farmer 9 = {1, . . . , =}. Given that the size of the market is

normalized to 1.0, the distance between two neighboring farm locations is G 9+1 − G 9 = 1/(=− 1).

Buyers can choose to locate at any of those locations. Given the normalizations of monetary and

spatial units, all strategy variables W8 = {<8 , U8 , G8} are in the interval [0, 1].

Each competitive farmer’s strategy is to select the higher net price at her/his own location and

set quantity according to the supply function (1), given this price. The decision rule of buyers

must, however, incorporate strategic interactions, and the search for Nash equilibrium strategies

involves all of the aforementioned complications.

4.1 Modeling Buyer Decision Making with a GA

To illustrate how the GA operates and to demonstrate its ability to identify NE, we begin by

replicating the touching equilibrium W� = (1/2, 1/2, 1/4) and W� = (1/2, 1/2, 3/4) with the

simulation. The first step to initialize a GA is to generate a pool of possible solutions—the

so-called population. In our case, such a population consists of an arbitrary number of triples.

Each represents a random combination of the decision variables <, U and G within their feasible

ranges to comprise a buyer’s strategy W = (<, U, G). While the triples bear information in terms

of real numbers (the phenotype), GA commonly work on encoded representations as binary

strings (the genotype). Thereby, a single piece of information (e.g., the mill price <) is called a

gene, and the chaining of genes (the strategy W) is the chromosome. Since we consider strategic

interactions among processors, we use a co-evolving simulation structure (Price, 1997; Son and

Baldick, 2004), i.e., each buyer 8 has an individual GA with an individual population Γ8,6 that

is optimized over a given number 6<0G of so-called generations. Throughout the paper, we use

E = 25 chromosomes to form the initial population Γ8,0 = {W:8,0 |: = 0, . . . , E} of each buyer.

The second part of the GA is a fitness function, whichmeasures howwell a particular strategy

(represented by the chromosome) solves a problem. To evaluate the performance of 8’s spatial

competition strategy, we use the sum of local profits, i.e., equation (4), over all seller locations

12



G 9 where firm 8 sets the higher local price:

Π8 (W8 , W−8) =
=∑
9=1
c(G 9) ∀G 9 ∈ [0, 1] : ?8 (G 9) > ?−8 (G 9). (6)

Because the profit to buyer A depends on the strategy chosen by buyer B, we evaluate the profit

(fitness) of A for each W:
�,0 relative to a randomly selected strategy W:′

�,0 of firm B. Clearly, if we

select a different strategy, W:′′
�,0, for firmB the profit of W:

�,0 is likely to change. Hence, we conduct

a tournament, where all of A’s strategies are tested repeatedly and in different combinations with

the competitor’s strategies to approximate the expected profits of A’s strategies for the given set

of B’s strategies. This process yields an average profit Π̄:
�
(W:
�,0, $B,0) of strategy W

:
�,0, with

$B,0 ⊂ Γ�,0 being a vector of randomly selected strategies out of buyer’s B strategy pool. The

repeated test of all W�,0 ∈ Γ�,0 assigns an average profit value (Π̄:
8,0) to each strategy : of buyer

A, as well as buyer B.

Given the evaluation of the fitness function, we identify the best strategy W∗
8,0 within Γ�,0

and Γ�,0. Of course, the best strategy of the initial population is not likely to be the optimal

strategy overall. Therefore, the last step within a GA’s generation 6 is to apply genetic operators.

Depending on the application, the design of a GA may vary considerably, but usually there are

three standard operators: selection, crossover, and mutation. The task of these operators is to

generate a new pool of potentially improved strategies Γ8,6+1 for the next generation 6 + 1.

In our GA implementation, selection picks a predefined share ¤E = [0, 1] of Γ8,6 that contains

its best chromosomes according to the fitness evaluation. Because we use ¤E = 0.8 and to hold

the population size E constant in each generation, the difference in the new population is filled

up by E − ¤E random copies of already selected strategies. The higher the fitness of a strategy, the

more likely it will be duplicated to fill up Γ8,6+1.

While selection reduces the variability of the population, crossover and mutation expand

it. These two operators are commonly included with low probabilities such that selection is the

major operator to produce the next population in 6 + 1. Crossover (or recombination) splits up
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two (parent) chromosomes, e.g., W1 = (<1, U1, G1) and W2 = (<2, U2, G2), with given probability

at a random locus. The exchange of the fragments yields two offspring, e.g., W1 = (<1, U1, G2)

and W2 = (<2, U2, G1), representing (with high probability) new strategies. Mutation randomly

alters the information carried by a chromosome and generates a mutant strategy, e.g., from

W1 = (<1, U1, G1) to W1′ = (<1, U1′, G1). In our simulations the probability of mutation is 4% and

the rate of crossover is 10%. After selection, crossover, and mutation are applied, each buyer has

a new pool of strategies Γ8,6+1 mostly consisting of retained strategies from the prior generation

but also some newly created chromosomes.

Figure 2 shows the composition of the initial strategy pool and the population after five as

well as 1,000 generations with respect to the location variable G. The figure highlights that the

algorithm needs a number of generations to adapt to the problem but eventually yields a variable

distribution that is very close to the expected solution.

Figure 2: Distribution of the buyers’ location parameter G in the initial population (solid, black),
after five (dashed, black), and 1,000 generations (solid, gray), respectively.

14



To improve the precision of the GA’s outcome and avoid effects based on the initialization,

we run the simulation over a sufficient number of repetitions; we repeat the GA simulation 40

times with 6<0G = 2, 500. The last five percent of 6<0G are reported for analysis. Thus, we

investigate 5,000 games with 10,000 observations for the duopsony setting.

In our example, the average outcome (over the last five percent of generations and all

repetitions, denoted by 6̄) is W∗
�,6̄

= (0.500, 0.500, 0.248) and W∗
�,6̄

= (0.500, 0.500, 0.751),

which shows that the GA is able to approximate the analytical solution with high precision.

Indeed, the lower (&1) and upper quartile (&3) of 400 equidistant locations is at G(&1) =

99/399 = .248 and G(&3) = 300/399 = .752. Hence, the deviation from 1/4 and 3/4 of the

location variable is due to the discrete nature of locations within the simulation.

InAppendixA.1we present applications of the simulation to other spatial competitionmodels

in input and output markets that have been investigated in the literature, including those involving

pure, mixed (Shilony, 1981; Zhang and Sexton, 2001), and asymmetric (Mérel and Sexton, 2010)

price strategies, and games involving choice of both location and FOB price (Hinloopen and van

Marrewĳk, 1999). These replication exercises further demonstrate the ability of the GA to closely

approximate known analytical price and location equilibria, whether in pure or mixed strategies,

giving us confidence that we can apply the model to study behavior in a broad range of complex

settings.

Given that nonexistence of pure strategy Nash equilibria is a significant phenomenon in

simpler spatial markets settings than ours due to market-stealing incentives (see footnote 5), it

is very reasonable to expect similar results for some values of C in our more complex model

environment. Thus, the GA’s ability to depict mixed-strategy equilibria is a central aspect of

this paper. Unlike an analytical solution such as the touching equilibrium wherein the GA yields

a definitive strategy profile, or set of strategies in the case of multiple equilibria (Mérel and

Sexton, 2010), the solution for a mixed-strategy equilibrium is a probability distribution for the

decision variables. The GA does not directly yield the equilibrium probability distribution in

any particular simulation, but, as the results in Appendix A demonstrate, across a large number
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of simulations the GA does a very good job of approximating distribution functions for known

mixed-strategy equilibria.

As some of the giants of noncooperative game theory have observed (e.g., Rubinstein, 1991),

the idea of mixed strategies involving randomization or players executing a lottery is unappealing

in economics applications, but, outside of simple games of chance, such interpretations are naive

and unnecessary. An alternative interpretation, which is appropriate in the present case, is what

is known as the large population case (Rubinstein, 1991; Oeschssler, 1997), wherein a game

is viewed as an interaction involving large populations, and each occurrence of the game takes

place after a draw of players from these populations. Each player implements a pure strategy,

with the mixed strategy equilibrium viewed as the resultant distribution of pure strategies across

the repetitions of the game.

This interpretation aptly describes the process undertaken by the GA. Each iteration within

a simulation represents a draw from the population, and across a large number of draws or

replications the distributions for the strategy variables are revealed. The behavior of any specific

processors in a particular country or region for a particular commodity holds little interest relative

to understanding the types of behavior that will and will not unfold in spatial agricultural product

procurement markets generally.

5 Simulation Experiments and Results

We present results of simulations where two buyers choose optimal location, G8 , and pricing

regime, (<8 , U8), given the strategy Γ−8 = (<−8 , U−8 , G−8) of the competitor. Results are reported

for C in increments of 0.05, ranging from perfect (Bertrand) competition to two spatially sepa-

rated monopsonies based on 5,000 games (draws from the population of processors), or 10,000

observations for each value of C = {0.0, 0.05, . . . , 5.0}.13 Figure 3 reports median values of

the decision variables mill price, <̃, and share of transport costs borne by farmers, Ũ for each

13 Although primary interest lies in the range of C values where head-to-head competition prevails between the
buying firms, we include results of interest for values of C ∈ [4, 5] to show firm behavior under monopsony.
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simulated value of C. For location, the figure presents the median distance separating the two

firms, the median inter-buyer distance G̃��, where G�� = G� − G�. Median values and standard

deviation for each of the strategy variables and each value of C are reported in Appendix B.

median mill price (m
˜
)

median transfer of tranpsort costs (α˜)

median inter-buyer distance (x
˜
AB)

0 1 2 3 4 5
t0.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Simulation results for price strategy and location in the generalized Hotelling model

For high transport costs (i.e., C → 4), results are consistent with the touching equilibrium

discussed previously. Firms locate at or very near the market’s quartiles (i.e., at distance

|G̃ − 1/2| = 1/4 symmetrically right and left of the market center and G̃�� = 1/2), and, given

the flexibility to do so, the firms adopt pricing strategies close to optimal monopsony price

discrimination, with (<, U) = (1/2, 1/2). For values of C ∈ [3, 4), the pricing and location

equilibrium closely resembles the touching equilibrium, where active but weak head-to-head

competition exists between the firms at the market center.

At the other extreme, as C → 0, we find the classic Bertrand-Nash equilibrium with mill

price < converging to the marginal value product of the farm input, (< = q = 1). The choice of

G and U is irrelevant if C = 0. Because all decision variables are randomly initialized according

to a uniform distribution within [0, 1], the expected median values of Ũ = 1/2 and G̃�� = 1/2

(with G̃� = 1/4, G̃� = 3/4) are obtained.

The results depicted in Figure 3 represent the central tendency over 5,000 games for each
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level of C. The initial set of strategies available to each buyer is randomly assigned and hence

varies for each repetition. Because of this and the very nature of the GA simulation, which is

based on stochastic processes including the random match of strategies, the full outcome of the

simulation for each value of C is a distribution for each of the three decision variables. If there is

a unique NE in pure strategies, the distribution is degenerate, with the only source of variation

being the numerical error which is inherent to any numerical method. For example, for C = 4 and

the touching equilibrium the standard deviations of U and < are 0.0151 and 0.0093, respectively

(Appendix B).

Figure 4 shows the cumulative distribution functions (CDFs) for <, U, and G�� for C =

{0.5, 1.0, 1.5, 2.0, 3.0} and illustrates that the distributions of the decision variables change

considerably over the parameter range of C.14 For small but positive values of C, Figures 3 and

4 highlight a rich and complex set of relationships between firms’ price policies and location

choices. In these settings, differentiation between firms is minor, creating the potential for intense

price competition, including market stealing and nonexistence of pure strategy Nash equilibria.

The total economic surplus available in the market is highest for low values of C. A firm

that locates near the center of the production region positions itself well to capture the supply

available in the market, and this is a dominant incentive for low C. However, if both buyers chose

to locate directly at the market center (i.e., minimum differentiation), competition between them

would dissipate their profits as in a Bertrand paradox setting.

The simulation results show, however, that firms are able to avoid competing profits away

completely for positive but low C by (a) each locating some distance from the market center and

(b) using close-to FOB pricing, thereby limiting competition to the market boundary. Although

Ũ is consistently large for C < 1, reflecting near FOB pricing, <̃ declines monotonically in C,

reflecting the lessening competitive pressure caused by higher values of C. Separation of firms

G̃�� under low C, although critical to their profitability, is nonetheless modest and rises only

14 The CDFs represent a smooth kernel distribution based on simulation results. The density functions that
accompany the CDFs are provided in Appendix C.
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Figure 4: Cumulative distribution functions of the decision variables for selected values of the
normalized transport costs C (10,000 observations).

gradually from 0.24 to 0.33 over the interval C ∈ (0, 1.3] (see Appendix B).

A different type of result emerges for C ∈ [0.80, 1.25]. Here firms adopt asymmetric

strategies. One buyer locates near the center of the market and uses FOB or near-to FOB pricing,

while the other buyer locates within the first or fourth quartile of the market and uses UD or

near-to UD pricing. This asymmetric pricing is illustrated in figure 5, with market boundary Ĝ,

and is manifest in figure 4 in the bimodal CDF for < and U (see C = 1). Appendix C shows the

combination of the decision variables by means of density plots. Such asymmetric strategies

are remindful of the Zhang and Sexton (2001) result that for moderate values of C equilibrium

involved one firm choosing FOB pricing and the other choosing UD pricing. This combination

of pricing strategies limits competition to the market boundary. The firms’ locations under the

asymmetric equilibrium also result in greater separation between them compared to lower values

of C (e.g., compare the CDFs for G�� for C = 0.5 and C = 1). The UD-pricing firm thus also
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contributes to reduced head-to-head competition by locating away from the market center. This

apparent locational disadvantage is obviated by the firm utilizing UD pricing, which makes its

offer competitive over a large geographic area.

0 xA x xB 1

mA

1

mB

1

Figure 5: Pricing schedules, locations, and market areas under asymmetric strategies.

Indeed it has commonly been argued that high price discrimination in the form of UD pricing

is superior to FOB pricing in settings with intense spatial competition because UD pricing makes

a firm’s price competitive over a broadmarket area (Greenhut et al., 1987; Thisse andVives, 1988;

Espinosa, 1992; Graubner et al., 2011). Firms choosing close-to FOB pricing for low values

of C and choosing asymmetric UD and FOB pricing strategies for moderate C is not consistent

with these results and beliefs, but is consistent with the idea that firms in intensively competitive

market environments will find ways to mutually forbear and mitigate the competitive pressures

to some degree. With mutual UD pricing, a firm has a strong unilateral incentive to overbid its

rival in order to capture the entire market within the area it is willing to serve. In contrast, FOB

pricing restricts direct price competition to the market’s boundary, making it a tool to mitigate

competition. An FOB-pricing firm that increases its mill price < only captures incremental sales

at the market border regardless of the pricing strategy employed by its rival, and, meanwhile,

loses profits from all infra marginal sellers.15 Choice of asymmetric pricing strategies also works
15 The exception is the aforementioned “market stealing” case wherein a FOB-pricing firm overbids its FOB-pricing
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to limit direct competition to the market boundary and to limit market-stealing opportunities.

The second strategic tool to moderate competition, which is unexplored when firms are

exogenously located at the market’s endpoints, is for one or both firms to forbear from operating

directly at the center of the production region. For given C, separation in space increases

differentiation between the firms, mitigating the pressures of pure price competition. Indeed,

when a model endows firms with the full set of tools they would ordinarily possess in the real

world, it becomes apparent that some of them broadly substitute for each other. Choice of

location and share of freight charges to pay is a key example. Both FOB pricing (or near-to

it) and location away from the market’s center are tools to mute price competition with a rival.

Similarly, location near the market’s center and adoption of UD or close-to UD pricing are also

substitute tools to access product over a broad geographic area. Thus, the combination of locating

within the first or fourth quartile to limit price competition and adopting UD or close-to UD

pricing to facilitate access to farm product can be roughly equivalent to a strategy of locating

near the market’s midpoint to facilitate access to product and implementing FOB or close-to

FOB pricing to limit direct price competition. Indeed firms adopting these asymmetric strategy

combinations for moderate values of C are better off compared to two buyers locating close to the

market center using FOB pricing and capturing only half of the market.

Note the simulation shows that minimum differentiation does not occur. If the distance

between both firms is too small, market stealing is easily possible. The potential for market

stealing, however, decreases with the inter-buyer distance G�� because market stealing for 8

requires that <8 − U8G�� ≥ <−8 . As long as the distance between a buyer’s location and the

market center |G8 − 1/2| is sufficiently large (but still small relative to the market region), the

competitor is better off by locating away from the market center (close to the quartiles) and using

close to UD pricing.

As C rises we see a sharp increase in spatial price discrimination; Ũ decreases rapidly in C,

approximating UD pricing for both firms for a range of values in the vicinity of C = 2. We also

rival sufficiently to capture the entire market area that receives a positive net price.
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see an increase of spatial differentiation, G��, representing a movement of both firms towards the

efficient location at the market quartiles. Further increases in C have little impact on the location

choice of the buyers. Spatial price discrimination, however, begins to dissipate for larger values

of C, and converges upon OD pricing.

The median mill price <̃ decreases with C for low and intermediate market competitiveness

before it increases under low and decreasing competitiveness to converge upon < = 0.5, also

consistent with OD pricing. This non-monotonic relationship between < and C corresponds to

the “weak duopsony” case described by Mérel et al. (2009). For relatively large values of C,

competition is weak but given U > 0, increases in C reduce grower supplies and buyer profits

for a given value of < and, if C is sufficiently large, the market would no longer be covered.

Buyers rationally respond to increases in C in this range by raising price to maintain supplies of

the product, including full market coverage.

All three decision variables converge eventually to the optimal values under monopsony for

sufficiently large values of C. As figures 3 and 4 illustrate, this convergence occurs for C ≈ 3, when

head-to-head competition still exists but is weak. The OD price strategy prevails throughout the

monopsony range of C > 4. As C increases above 4.0, however, G�� increases again, reflecting

buyers’ locations at the midpoints of their shrinking market areas. These markets feature two

spatially separated monopsonies, and “subsistence” regions around the market center and/or at

the region’s border(s) that are unserved by either buyer.

A particularly important result illustrated in both figures 3 and 4 is that neither maximum

nor minimum differentiation ever appear as part of the equilibrium strategy for buyers regardless

of the value of C. Even when C is low and location at the market center maximizes a buyer’s

access to valuable farm product, each buyer forbears by locating strictly within the second and

third quartiles.

The incentive to maximally differentiate to reduce competition does not ever dominate the

other incentives at work in the generalized market environment studied here. Thus, despite many
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studies of spatial markets exogenously locating firms on the endpoints of Hotelling’s street,16 and

some analytic results supporting maximum differentiation as an equilibrium strategy in special

cases (e.g., d’Aspremont et al., 1979; Kats, 1995), it appears that firms do not choose those

locations when confronted with elastic consumer demands or farmer supplies, costly transport

of product, and the freedom to adopt flexible pricing schedules.

To understand the reasons behind this divergence in results, note that the location of the

buyer within its own market area does not affect the firm’s profit under FOB pricing and inelastic

farm supply (or consumer demand), as in the base Hotelling model. When U = 1 and supplies

are inelastic (and normalized to 1), local profit in our model as defined in equation (4) reduces

to 1 − < and is hence constant irrespective of the distance to the seller. The incentive for firms

to locate at the market boundaries to minimize direct competition becomes dominant in these

cases.

However, if supply is elastic, buyer profits earned at each farm location decrease with

increasing distance to the buyer’s location because nearby sellers obtain a high local price and

supply more, thus yielding greater local profit to the buyer compared to more distant sellers. We

denote this as the supply effect of a location decision. As a result, elastic demand functions in

the selling case or input supply functions in our input-buying case create an incentive, ceteris

paribus, for firms to choose central locations within the own market area when operating under

a price policy with U > 0.

To illustrate the importance of the supply effect, we computed '1(C) as the ratio of supply

received by a seller located at the end point of its market area to the supply received by a seller

located at the midpoint (i.e., quartile) under competitive FOB pricing (< = 1) and unit-elastic

16 Examples on the farm-product procurement side include Zhang and Sexton (2000), Mérel et al. (2009), Fousekis
(2011), and Graubner et al. (2011).
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Figure 6: Ratio '1 of total supply for buyer A using competitive FOB pricing (<� = 1 and
U� = 1) and located at the market endpoint (G� = 0) relative to the same buyer located
at the quartile (G� = 1/4) over the relevant range of spatial competition.

supply functions. Performing the calculations yields the following:

'1(C) =



2C − 8
C − 8

if 0 ≤ C < 2,

8
(8 − C)C if 2 ≤ C < 4,

1
2

if 4 ≥ C.

(7)

Figure 6 summarizes the results. '1(C) < 1 for all C > 0 and declines monotonically in C,

before becoming constant at '1(C) = 0.5 for C ≥ 4. For example, '1(2) = 2
3 .
17 Once elastic

response to price by the farmers along Hotelling’s street is introduced, the supply effect creates a

strong incentive for firms to locate in the center of their market area, with the importance of the

effect increasing in C.

Independent of the elasticity of the supply function, any price strategy that involves the buyer

paying some portion of the transport costs, i.e., 0 ≤ U < 1, also creates the incentive to choose

17 The FOB-pricing buyer located at the market’s endpoint has a market radius less than one half for C > 2.
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a central location within the procurement area because the buyer’s per unit transport costs are

minimized if the firm locates in the center of its own market area. This cost effect of firm location

is also increasing in C.

To gain a sense of the importance of the cost effect in firm location decisions, we computed

'2(C) as the ratio of per-unit transport cost paid by a buyer located at the endpoint and engaging

in OD monopsony pricing (thus, bearing half the transport cost) to per-unit transport cost paid

by a buyer located at the quartile and also engaging in OD pricing as in the touching equilibrium.

Performing the calculations yields:

'2(C) =


2 if 0 < C ≤ 2,
4
C

if 2 < C ≤ 4,

1 if C > 4.

(8)

Figure 7 illustrates the results for '2(C). Per-unit transport costs are twice as high for a buyer

at the endpoint compared to a buyer at the quartile for 0 < C ≤ 2, i.e., as long as the end-point

buyer can profitably buy at all locations up to the market’s midpoint. '2(C) decreases with C for

C > 2 because the buyer at the endpoint serves a market area less than one half, which reduces its

unit transport costs. If C = 4, both buyers have identical market radii and per-unit transport costs,

although the quartile buyer has twice the supply.

Both the supply and cost effects of the location choice apply to any pricing strategy outside

of the polar cases of UD and FOB pricing, but the powerful incentives they create are missed

in analyses that assume one of these polar forms of spatial pricing or locate firms exogenously.

The supply effect is also missed for any analysis that assumes inelastic response to price for

the residents of Hotelling’s street. Both effects incentivize firms to locate at the center of their

respective market areas.

Offsetting forces are the already-noted incentive to maximally differentiate in location from

the rival firm to lessen price competition and an opposite incentive to locate near the center of

the total production region to maximize access to farm production. Both the cost and supply

25



0 1 2 3 4 5
t

0.5

1.0

1.5

2.0
R2

Figure 7: Ratio '2 of per-unit transport costs paid by the OD-pricing buyer located at the endpoint
(G� = 0) relative to location at the quartile (G� = 1/4).

effects increase in importance with C, so for low values of C they are not powerful enough relative

to the incentive to choose a central location in the total production region to pull the firms to

the quartiles. Firms’ locations drift towards the market quartiles as C increases above 1.1, with

convergence to the quartile locations for all C ≈ 1.5 and greater (Appendix B).

5.1 Welfare Distribution

Figure 8 shows the distribution of economic surplus among producers, processors, and dead-

weight loss as a function of C. The outcomes of each game (i.e., <8 , U8 , and G8) were used to

calculate total buyer profit (Π) and consumer surplus (PS) in the market, based on equations (1)

and (4) and with

Π =

∫ 1

0
(c� + c�)3G and %( =

1
2

∫ 1

0
@(G)23G. (9)

Deadweight loss (DWL) is computed relative to a solution %(� where buyers operate at the

quartiles and set the competitive FOB price, i.e., (<, U) = (1, 1), thereby eliminating surplus
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loss due to inefficient transportation and imperfectly competitive pricing: 18

�,! = %(� − Π − %(, (10)

with %(� = 2
∫ 1/4

max[0, (C−4)/4]
1 − C (A − 1/4)3G.

Farmers capture the lion’s share of the available market surplus in producer surplus (PS) for

C ∈ [0, 1.1], reflecting the competitiveness of these market structures. Whereas PS declines

monotonically in C, total buyer profits increase over the range of low values of C and actually

reach their maximum at approximately C = 0.9. Even though processors’ share of profits is

greater for higher values of C, the total available surplus is less in these settings. DWL is present

and increasing in C because of suboptimal firm location relative to minimizing transport costs for

low C and departures from competitive pricing for all C > 0.

buyer profit

producer surplus

deadweight loss
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Figure 8: Buyer profit, producer surplus and deadweight loss as a function of the normalized
transport cost C. The welfare measures are calculated based on the simulation results
for each iteration while the graphs show median values (over 5,000 games) for each
level of C.

Larger values of C dissipate the available economic surplus in the market, causing processor

18 In the competitive setting, producers capture the market surplus and because of symmetry this surplus is identical
for each market quartile. Therefore, %(� in equation (10) is formulated for the first quartile and considers the case
when the competitive buyers are not able to cover the market, i.e., C > 4.
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LII = (|xA-1/4|+|xB-3/4|)
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Figure 9: Location inefficiency index as a function of the normalized transport cost C.

profit to decrease in C for values of C > 0.9, despite processors’ market power increasing as

a function of C. Also notable is that DWL does not rise monotonically in C, as might be

expected. Although the portion of DWL due to the exercise of oligopsony power increases in C,

the inefficiency cost of suboptimal buyer locations decreases in C as firms move to the efficient

locations at the market quartiles. This point is illustrated in figure 9, which displays a location

inefficiency index (!��) constructed as the the sum of each firm’s location relative to its efficient

location at the quartile, i.e., !�� =|G� − 0.25|+|G� − 0.75|. This index is roughly constant at

!�� ≈ 0.25 for C ∈ (0, 1.3], and then declines rapidly in C to converge upon zero. Inefficient

locations are chosen only for low values of C when the costs of such inefficiency are low.

5.2 Market Competition

Spatial separation among buying firms in the presence of costly transportation creates differen-

tiation between them and natural oligopsony procurement markets. This fundamental structural

dimension of many farm-product procurement markets is a key reason behind concerns of buyer

power in farm product markets (Faminow and Benson, 1990; Rogers and Sexton, 1994; Sexton

and Xia, 2018; Hamilton and Sunding, 2020; Jung et al., 2021). Most of the theory supporting
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oligopsony distortions in these markets is, however, based on models with restrictive assump-

tions as this paper has already noted, prominent among them being locating firms at the market

boundaries, using FOB pricing, and setting inelastic farm supplies.

We now ask how conclusions about market competition are impacted by the results found

here for firm locations and pricing strategies. A natural basis for comparison is the analytical

result of Zhang and Sexton (2001) for FOB-pricing firms located at the boundaries of Hotelling’s

line, given the frequency with which these assumptions are made in the literature. Their model

incorporates the unit elastic supply response utilized here, which induces more competitive

behavior and a higher mill price than under inelastic farm supply.

For each value of C ∈ [0, 5] in increments of 0.05, we computed the unique value of PS for

ZS’s analytical result. Each iteration of the simulation yields a unique value for producer surplus,

and those values were averaged across the simulation runs for each C to produce the final results.

We then computed the ratio '3(C) and report the results in figure 10.

'3(C) =
%((8<(C)
%(/( (C)

(11)
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Figure 10: Ratio '3 of median producer surplus obtained from the simulation experiments %((8<
relative to the producer surplus %(/( in the model of Zhang and Sexton (2001) over
the relevant range of spatial competition.
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PS is higher under the simulation results for all C > 0. In fact, PS based on the results of theGA

optimization is more than double the value from ZS, i.e., '3(C) > 2, for intermediate values of C.

Eventually the ratio converges to '3(C) ≈ 1.7 for C ≥ 2.5. Despite the considerable importance of

the spatial dimension tomost farmproduct procurementmarkets, they are apparently considerably

more competitive than the conventional theory would lead us to believe. The increase in producer

welfare in the simulation results relative to ZS is driven by the fact that firms do not maximally

differentiate, as they do by assumption in ZS, and for considerable ranges of C do not employ

symmetric FOB pricing. This leads to more intense price competition and to full market coverage

over a considerably larger range of C relative to ZS (i.e., C ≤ 4 in our model relative to C ≤ 4/3 in

ZS).

6 Conclusion

Locations of agricultural processing/packing firms and the pricing strategies they adopt are

critical determinants of the efficiency of farm-product assembly and the competitiveness of farm-

product procurement markets. Although significant contributions to addressing these issues have

been made, studies have encountered severe challenges due to the analytical complexities created

by introducing the spatial dimension into models of farm-product procurement. Studies to date

have been able to move forward only by imposing strong assumptions on economic models, with

corresponding limitations on the generality of results derived from them.

This paper has eschewed the quest for analytical solutions, relying instead on a computational

economics framework and the use of genetic algorithms to study processing/packing firms’

decisions on location and pricing strategy. Our results stand in considerable contrast to received

wisdom regarding these decisions. Specifically, we find that maximum differentiation, i.e.,

location on the endpoints of Hotelling’s line, although often assumed as the starting point in

models of spatial pricing, is never part of an equilibrium location and pricing strategy. Nor is

minimum differentiation part of equilibrium behavior, although firms locate closest to each other
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for low values of C, when competition is most intense. As transport costs become more important

with rising C, firms gravitate to the efficient locations at the market quartiles.

We also find a rich diversity of pricing strategies depending on the importance of the spatial

dimension in the market. Many of the pricing strategies involve price discrimination, with

absorption of some or all freight charges by the buyer. The diversity of pricing strategies found

in this paper is broadly consistent with what is observed in the real world, where firms have

access to readily implementable mechanisms to absorb farm-to-plant shipping costs when it is

optimal to do so.

The seemingly paradoxical result that firms locate closest to their rivals for low values of C

when competition is most intense is understood in terms of firms’ quest to locate accessibly to

farm production in these settings when it is most valuable, their use of pricing strategies to mute

the otherwise-intense competition, and the lesser importance for low C of factors that motivate

firms to locate in the centers of their market areas. Firms avoid the most intense price competition

by not locating in direct proximity to each other, i.e., minimum differentiation does not emerge

in equilibrium, and by at least one firm choosing a pricing strategy close to FOB pricing, which

limits direct price competition to the market boundaries.

Although maximum differentiation has the desirable property from a buyer’s perspective

of minimizing price competition with its rival, it is a poor strategy in a generalized market

environment that enables farmers to have an elastic response to price and that enables flexible

pricing strategies such that buyers can absorb any portion of the costs of transporting product

from farm gate to plant gate. As noted, it is often optimal for firms to absorb some portion of

transport costs and in that setting to locate at the midpoint of their market areas to minimize those

costs–what we termed the cost effect. Similarly, with elastic farm supplies a supply effect creates

the same incentive–supplies are maximized when firms locate at the midpoint of their market

areas whenever the pricing strategy involves farmers bearing some portion of the transport costs.

In general, our results suggest farm product procurement markets are both more competitive

and more efficient than is predicted based on conventional wisdom. As the possible market
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power exercised by buyers of agricultural products from farmers has risen to primacy among

competition issues in agriculture for both western and emerging economies, we hope these results

can contribute to ongoing debates regarding optimal competition policies and structure of supply

chains.
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Appendix A

A.1 Validation of the Simulation Model

Here we provide further validation of the simulation framework by seeking to replicate known
analytical solutions for Nash-equilibria (NE) in asymmetric and mixed strategies. For the sake
of brevity and illustrative purposes, we borrow findings from the literature and contrast these
analytical results with outcomes of the simulation.

A.1.1 Asymmetric Strategies under FOB Pricing

The first application of the simulation model concerns the full characterization of price equilibria
in Hotelling’s model of horizontal product differentiation provided by Mérel and Sexton (2010).
The authors derive the duopolist’s equilibrium price schedule under FOB pricing, fixed locations
(maximum differentiation) and perfectly inelastic consumer demand functions. To replicate their
result, we implemented the GA simulation as a duopoly game with U� = U� = 1, G� = 0, and
G� = 1, i.e., < is the buyers’ only decision variable. Simulations are conducted over the range of
normalized transport costs of C = [0, 5/4] with C incremented by 1/20. The outcome is shown in
Figure A.1, where the theoretical result of Mérel and Sexton (2010) and the average FOB price
as reported from the simulations are depicted.
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Figure A.1: The analytical equilibriumFOBprice schedule (gray) due toMérel and Sexton (2010,
Figure 4) and the average FOB price for selected levels of normalized transport costs
from the simulation (blue). The points represent the average mill price over 5,000
games (10,000 observations).

The figure illustrates that the GA is able to approximate the analytical result with high
precision ('2 = 0.997). However, Mérel and Sexton (2010) also identify NE in asymmetric
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Figure A.2: FOB price equilibrium for (a) C = 0.2 (duopoly) and (b) C = 0.8 (weak duopoly)
according to (Figure 6 and 7 in) Mérel and Sexton (2010) and the simulation results
(blue) of 5,000 games (10,000 observations).

strategies in the range 2/3 ≤ C < 1, whereas there is a unique symmetric NE if 0 ≤ C < 2/3.19 If
we investigate the simulation outcome for each level of C in more detail, i.e., on a disaggregated
level, we observe that the GA again closely approximates the unique NE (e.g., in the case
of C = .2), but it also identifies strategies that constitute a subset of the continuum of NE in
asymmetric strategies (e.g., when C = .8). This is illustrated in Figure A.2 where one example
for each of the two situations is presented; in the case of low transport costs, the price reaction
functions (<∗

8
) of both firms intersect once, which constitutes a unique and symmetric NE while

– in the case of moderate transport costs (b) – these reaction functions partially overlap.

A.1.2 Mixed Strategy NE under UD Pricing

The second application concerns the duopsony framework of maximum differentiation inves-
tigated by Zhang and Sexton (2001) where buyers of an (agricultural) input use UD pricing,
sellers have a price elastic supply function and spatial arbitrage is possible.20 In this setting, a
NE in pure strategies fails to exist as long as transport costs are not so high as to allow both
buyers to act as locally separated monopsonies. Following Beckmann (1973), the authors derive
the optimal mixed strategy in terms of a cumulative distribution function (CDF) with support
between an upper (<+

8
) and lower (<−

8
) limit of UD prices. Figure A.3 shows the CDF and the

19 Both firms act as local monopolies if C ≥ 1 and set < = 1/2.
20 In this setting, spatial arbitrage means that sellers can take advantage of local price differences among locations
served by different buyers and transport the input to the closest location of the competitor if the price differences make
this profitable.
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Figure A.3: The UD pricing duopsony due to Zhang and Sexton (2001) for C = 1.0: (a) Mixed
strategy (expressed as cumulative distribution function) � (<) and (b) upper and
lower price limits of both buyers under � (<). Simulation results are colored in blue
based on 5,000 games (10,000 observations).

price limits for both firms in the case of C = 1. The results of the simulation are pictured in
blue: The GAs are initialized with U� = U� = 0 (for UD pricing) and G� = G� − 1 = 0 (for
maximum differentiation). As can be seen, the mixed strategy is closely approximated by the
GA (Figure A.3a) and the selected strategies are almost never out of equilibrium (Figure A.3b).
The result needs to be interpreted with some caution though. The only variable that the GA
considers for optimization is the (UD) price < (separately for each buyer). Accordingly, there
is no information about the optimal weights (i.e., the probability assigned to a certain price)
and given the implemented selection operator, the simulation result is a linear approximation
of the non-linear CDF. This becomes apparent for the closely related problem investigated by
Shilony (1981): the UD pricing duopoly without spatial arbitrage by consumers. These results
are illustrated in Figure A.4.

In both examples shown in figures A.3 andA.4, the GA identifies strategies that are in support
of the mixed strategy and we therefore can approximate the domain of the NE in mixed strategies
with high precision. A full characterization of the equilibrium, however, is not feasible in cases
where we do not obtain analytical results.
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Figure A.4: The UD pricing duopoly due to Shilony (1981) for C = 1.0: (a) Mixed strategy
(expressed as cumulative distribution function) � (<) and (b) upper (< = 1) and
lower price limits of both buyers under � (<). Simulation results are colored in blue
based on 5,000 games (10,000 observations).

A.1.3 Hotelling’s Model of Horizontal Product Differentiation

While the previous applications concerned spatial price competition, the third combines price and
location decision in a duopoly framework as studied by Hinloopen and van Marrewĳk (1999).21
This model is a two-stage game where players first select location and the optimal (subgame
perfect) FOB price in the second stage. The authors introduce a finite consumer reservation price
into the Hotelling-model and investigate firm location depending on the intensity of competition,
g, which relates the consumer reservation price to the market size.22 The authors show that there
is a unique pure or a continuum of pure (monopolistic) location equilibria if g is intermediate or
high, respectively. If g is low, there is no pure strategy location equilibria. These results together
with the simulation outcome are depicted in Figure A.5.23 The bold black lines indicate location
equilibria in the intermediate range or the limits of the continuum of equilibria in pure strategies
for high g, while the shaded area indicates that there are no second-stage pure strategy price
equilibria. First, we note that the simulation produces consistent results in the upper part of the
figure where g is high and there is a unique location equilibrium or a continuum of monopolistic
location equilibria. If g > 2, the figure depicts the theoretical limits. On the one hand, the
simulation results (blue) are averages over simulation runs. On the other hand, these averages

21 Another location model against the simulation was validated is the outcome of maximum differentiation in the
Hotelling model for a circular market and sufficiently low consumer reservation prices derived by Kats (1995).
22 Hinloopen and van Marrewĳk (1999) denote this parameter U. We use g to avoid confusion with U in our paper,
which measures the share of transport costs that is reflected in the local prices of different locations (cf. equation (2)).
23 This figure replicates Figure 7 in Hinloopen and van Marrewĳk (1999).
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Figure A.5: The Firm’s location in the half market depending on the effective reservation price
g due to Hinloopen and van Marrewĳk (1999) and the outcome of the simulations
(in blue). Each dot represents the average over 5,000 games (10,000 observations).

approximates the theoretical mean outcome within the expected range.
Second, the results from the simulation and the theoretical model deviate for moderate levels

of g. We can ascribe these differences to the different structure of the game in our simulation and
the theoretical template of Hinloopen and van Marrewĳk (1999). There, players can condition
their pricing choice in stage two on the location choice in stage one. In our simulations, players
have to choose location and price simultaneously. Despite these structural difference, however,
we discover the same general price and location behavior as Hinloopen and vanMarrewĳk (1999)
only that our thresholds (in terms of g) for the existence of a unique and pure location equilibrium
is higher compared to Hinloopen and van Marrewĳk (1999). For low values of g, a NE in pure
strategies does not exist (cf. gray shaded area in the figure) and again, the simulation results
represent average values for G over strategies in support of the mixed strategy equilibrium.
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Appendix B

B.1 Full Simulation Results

Table B.1: Median values and standard deviation of the decision variables.

C <̃ SD(<) Ũ SD(U) G̃�� SD(G��)

0.00 0.9894 0.0767 0.5054 0.2850 0.4937 0.2030
0.05 0.9811 0.0501 0.8833 0.1693 0.2356 0.0832
0.10 0.9622 0.0433 0.8929 0.1918 0.2381 0.0877
0.15 0.9445 0.0123 0.8989 0.1355 0.2306 0.0713
0.20 0.9256 0.0207 0.8913 0.1823 0.2431 0.0745
0.25 0.9077 0.0125 0.8972 0.1531 0.2356 0.0720
0.30 0.8900 0.0163 0.8714 0.1630 0.2481 0.0741
0.35 0.8706 0.0146 0.8685 0.1626 0.2556 0.0720
0.40 0.8521 0.0154 0.8577 0.1625 0.2632 0.0668
0.45 0.8353 0.0153 0.8402 0.1712 0.2607 0.0697
0.50 0.8185 0.0174 0.8696 0.1738 0.2607 0.0690
0.55 0.8026 0.0183 0.8530 0.1997 0.2657 0.0679
0.60 0.7841 0.0196 0.8367 0.2086 0.2732 0.0658
0.65 0.7718 0.0209 0.8227 0.1917 0.2757 0.0646
0.70 0.7550 0.0260 0.8197 0.2408 0.2807 0.0663
0.75 0.7472 0.0297 0.8452 0.2470 0.2832 0.0689
0.80 0.7267 0.0312 0.7916 0.2796 0.2957 0.0655
0.85 0.7152 0.0351 0.7715 0.3121 0.3008 0.0575
0.90 0.7039 0.0377 0.7728 0.3275 0.3033 0.0583
0.95 0.6966 0.0460 0.7613 0.3487 0.3108 0.0604
1.00 0.6868 0.0481 0.7554 0.3639 0.3108 0.0592
1.05 0.6737 0.0531 0.7229 0.3715 0.3133 0.0548
1.10 0.6618 0.0546 0.6717 0.3697 0.3158 0.0561
1.15 0.6429 0.0567 0.5967 0.3613 0.3183 0.0597
1.20 0.6232 0.0603 0.5849 0.3603 0.3208 0.0658
1.25 0.6025 0.0629 0.4207 0.3544 0.3258 0.0731
1.30 0.5913 0.0607 0.3726 0.3260 0.3258 0.0777
1.35 0.5827 0.0562 0.2638 0.3006 0.3509 0.0798
1.40 0.5788 0.0531 0.2332 0.2779 0.4010 0.0751
1.45 0.5657 0.0375 0.1798 0.2208 0.4361 0.0615
1.50 0.5555 0.0338 0.1798 0.2119 0.4486 0.0532

Continued on next page.
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Table B.1 – continued from previous page

C <̃ SD(<) Ũ SD(U) G̃�� SD(G��)

1.55 0.5470 0.0308 0.1864 0.2008 0.4561 0.0448
1.60 0.5386 0.0275 0.1885 0.1838 0.4536 0.0419
1.65 0.5295 0.0291 0.1952 0.1842 0.4586 0.0397
1.70 0.5251 0.0261 0.2042 0.1815 0.4586 0.0366
1.75 0.5152 0.0251 0.1871 0.1725 0.4662 0.0328
1.80 0.5055 0.0233 0.1859 0.1581 0.4662 0.0314
1.85 0.5028 0.0223 0.1936 0.1440 0.4637 0.0294
1.90 0.4935 0.0230 0.1785 0.1372 0.4662 0.0258
1.95 0.4899 0.0203 0.1789 0.1393 0.4687 0.0234
2.00 0.4839 0.0217 0.1926 0.1233 0.4687 0.0214
2.05 0.4727 0.0196 0.1792 0.1280 0.4762 0.0202
2.10 0.4730 0.0190 0.1943 0.1156 0.4737 0.0201
2.15 0.4639 0.0164 0.1819 0.0949 0.4737 0.0173
2.20 0.4598 0.0142 0.1827 0.0908 0.4762 0.0140
2.25 0.4616 0.0154 0.2136 0.0653 0.4737 0.0130
2.30 0.4578 0.0145 0.2349 0.0564 0.4737 0.0118
2.35 0.4637 0.0151 0.2685 0.0496 0.4712 0.0120
2.40 0.4678 0.0135 0.3020 0.0418 0.4687 0.0113
2.45 0.4691 0.0117 0.3218 0.0368 0.4687 0.0119
2.50 0.4728 0.0123 0.3445 0.0354 0.4687 0.0114
2.55 0.4742 0.0115 0.3610 0.0327 0.4712 0.0121
2.60 0.4769 0.0121 0.3764 0.0335 0.4687 0.0112
2.65 0.4788 0.0101 0.3898 0.0264 0.4737 0.0115
2.70 0.4801 0.0112 0.4003 0.0290 0.4712 0.0116
2.75 0.4837 0.0108 0.4139 0.0254 0.4737 0.0108
2.80 0.4842 0.0109 0.4219 0.0253 0.4737 0.0099
2.85 0.4866 0.0097 0.4329 0.0230 0.4762 0.0100
2.90 0.4866 0.0094 0.4420 0.0223 0.4787 0.0102
2.95 0.4899 0.0107 0.4495 0.0243 0.4787 0.0095
3.00 0.4918 0.0112 0.4582 0.0250 0.4812 0.0087
3.05 0.4909 0.0094 0.4604 0.0202 0.4837 0.0093
3.10 0.4923 0.0110 0.4679 0.0232 0.4837 0.0093
3.15 0.4945 0.0113 0.4701 0.0221 0.4862 0.0095
3.20 0.4949 0.0117 0.4748 0.0247 0.4887 0.0096
3.25 0.4961 0.0112 0.4814 0.0224 0.4887 0.0091
3.30 0.4976 0.0111 0.4875 0.0223 0.4912 0.0090
3.35 0.4992 0.0129 0.4877 0.0238 0.4912 0.0104

Continued on next page.
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Table B.1 – continued from previous page

C <̃ SD(<) Ũ SD(U) G̃�� SD(G��)

3.40 0.4961 0.0115 0.4867 0.0224 0.4937 0.0091
3.45 0.4983 0.0102 0.4909 0.0190 0.4937 0.0096
3.50 0.4981 0.0124 0.4921 0.0243 0.4962 0.0100
3.55 0.4989 0.0115 0.4913 0.0219 0.4987 0.0096
3.60 0.5000 0.0117 0.4964 0.0206 0.4987 0.0113
3.65 0.5026 0.0117 0.5016 0.0212 0.4987 0.0109
3.70 0.5058 0.0103 0.5082 0.0184 0.5013 0.0117
3.75 0.5005 0.0120 0.5002 0.0195 0.5038 0.0112
3.80 0.5026 0.0114 0.5027 0.0191 0.5013 0.0115
3.85 0.5035 0.0118 0.5068 0.0198 0.4962 0.0115
3.90 0.5034 0.0102 0.5036 0.0168 0.4962 0.0134
3.95 0.5050 0.0103 0.5062 0.0165 0.4962 0.0136
4.00 0.5047 0.0093 0.5077 0.0151 0.4912 0.0171
4.05 0.5017 0.0107 0.5030 0.0178 0.4937 0.0190
4.10 0.5016 0.0107 0.5006 0.0169 0.4912 0.0207
4.15 0.5019 0.0088 0.5022 0.0137 0.4912 0.0235
4.20 0.5021 0.0101 0.5026 0.0166 0.4962 0.0259
4.25 0.5030 0.0094 0.5039 0.0144 0.4962 0.0279
4.30 0.5020 0.0099 0.5026 0.0158 0.5013 0.0310
4.35 0.5017 0.0106 0.5026 0.0173 0.5038 0.0327
4.40 0.5014 0.0082 0.5010 0.0135 0.5088 0.0354
4.45 0.5032 0.0089 0.5056 0.0147 0.5138 0.0345
4.50 0.4992 0.0089 0.5010 0.0158 0.5138 0.0382
4.55 0.5003 0.0095 0.5011 0.0162 0.5238 0.0389
4.60 0.5021 0.0081 0.5031 0.0139 0.5263 0.0386
4.65 0.4994 0.0094 0.4982 0.0158 0.5238 0.0410
4.70 0.5001 0.0085 0.4990 0.0141 0.5338 0.0406
4.75 0.4993 0.0082 0.4968 0.0134 0.5338 0.0405
4.80 0.5001 0.0086 0.5000 0.0148 0.5338 0.0436
4.85 0.5002 0.0099 0.4986 0.0167 0.5414 0.0408
4.90 0.5011 0.0084 0.5020 0.0140 0.5464 0.0427
4.95 0.5015 0.0082 0.5021 0.0141 0.5464 0.0428
5.00 0.4995 0.0082 0.4987 0.0142 0.5514 0.0425
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Appendix C

C.1 Distribution of the decision variables and their combination for
selected levels of the normalized transport costs

Each of the following graph reports results for the last 5% of 2500 generations of a GA run. For
each level of C, 40 runs were conducted. Accordingly, we obtain 10,000 observations (5,000 for
each buyer). While the density plots in the third row of each figure represent the combination of
decision variables selected by each buyer in each of these repetition of the game, the histograms
and the density plots in the second row show aggregated data for both buyers. The darker the
color in the density plots, the more often this combination was observed in the simulations.

C.1.1 Distribution of the decision variables for t=0.5
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Figure C.1: Distribution and combination of the decision variables (<8 , U8 , G8) and the distribu-
tion of the inter-buyer distance G��.
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C.1.2 Distribution of the decision variables for t=1.0
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Figure C.2: Distribution and combination of the decision variables (<8 , U8 , G8) and the distribu-
tion of the inter-buyer distance G��.
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C.1.3 Distribution of the decision variables for t=1.5
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Figure C.3: Distribution and combination of the decision variables (<8 , U8 , G8) and the distribu-
tion of the inter-buyer distance G��.
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C.1.4 Distribution of the decision variables for t=2.0
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Figure C.4: Distribution and combination of the decision variables (<8 , U8 , G8) and the distribu-
tion of the inter-buyer distance G��.
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C.1.5 Distribution of the decision variables for t=3.0
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Figure C.5: Distribution and combination of the decision variables (<8 , U8 , G8) and the distribu-
tion of the inter-buyer distance G��.

50



C.1.6 Distribution of the decision variables for t=4.0
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Figure C.6: Distribution and combination of the decision variables (<8 , U8 , G8) and the distribu-
tion of the inter-buyer distance G��.

51


	Introduction
	Background and Related Literature
	Model Framework
	Simulation Model
	Modeling Buyer Decision Making with a GA

	Simulation Experiments and Results
	Welfare Distribution
	Market Competition

	Conclusion
	Validation of the Simulation Model
	Asymmetric Strategies under FOB Pricing
	Mixed Strategy NE under UD Pricing
	Hotelling's Model of Horizontal Product Differentiation

	Full Simulation Results
	Distribution of the decision variables and their combination for selected levels of the normalized transport costs
	Distribution of the decision variables for t=0.5
	Distribution of the decision variables for t=1.0
	Distribution of the decision variables for t=1.5
	Distribution of the decision variables for t=2.0
	Distribution of the decision variables for t=3.0
	Distribution of the decision variables for t=4.0


