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Abstract

Network-based targeting is valuable in many applications such as diffusion of new tech-

nology, product promotion in marketing, crowd sourcing among others. Nevertheless, how to

quantitatively measure the effectiveness of targeting strategies remains a challenge. This paper

studies a class of network games with strategic complements, where a designer can choose finite

sequences of targeting interventions. We propose an effectiveness index, called relative network

synergy equivalent (RNSE), to measure the effect of such network-based targeting interventions.

Regardless of the targeting policies and the network structures, a simple upper bound for this

index is
√

2 ≈ 1.414. This unified bound is applicable with multiple stages of moves, revenue

maximization, costly seeding, and random seeding as the alternative benchmark. We also pro-

vide comparative analyses of this index across different targeting policies and across different

underlying network structures.
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1 Introduction

Network structure plays an important role in different types of behaviors. For instance, social

communication Apps have attracted numerous users to actively participate and interact; according

to Statista (2020), the numbers of active users in Facebook, WhatsApp, and WeChat are 2.7

billion, 2.0 billion, and 1.2 billion respectively. Peer effects among users have huge influence on the

purchases of video games like XBox and Switch, and sales of retailing business. See the surveys by

Jackson and Zenou (2015) and Jackson, Rogers, and Zenou (2017).

Given the profound impact of network effects, it is not surprising that fine-grained policies to

target at selected users in the social space are increasingly adopted by firms in these markets.1 The

central premise of such seeding, also known as network-based targeting, is that users in different

network positions have differential influences on others’ behaviors. Thus, if seeding is done appro-

priately, the targeted users will take the lead and boost the followers’ incentives, thereby resulting

in a better market outcome. For example, Richardson and Domingos (2002) discuss how targeting

can enhance the diffusion of brand awareness. In the charitable giving context, Jack and Recalde

(2015) conducted a field experiment to show that targeting the community leaders can increase

the public goods contribution. Banerjee, Chandrasekhar, Duflo, and Jackson (2019) examine how

targeting improves the propagation of microfinance programs. Beaman, BenYishay, Magruder, and

Mobarak (2021) investigate the effect on technology adoption in the agriculture sector.

The optimal targeting relies on the information about the social links among users, and the

exact solution is often not simple to compute. Despite this, there have been many discussions on

optimal targeting in the literature, both theoretically and empirically (such as Chen et al. (2009)

and Kempe et al. (2005), and references in the literature review section). It is such a profitable

domain that many companies have devoted full efforts to this targeting practice (such as Strawberry

Socials, Yoke Network, SDA Media, to name a few), and accordingly there are plenty of websites

and Apps that provide rankings of these companies.2 On the other hand, quantitatively evaluating

the values across different network structures and different targeting strategies is less explored (see

the literature review).

In this paper, we introduce a novel measure to evaluate the effectiveness of any targeting policy,

and provide an upper bound on the value of targeting across different strategies, and in different

environments with different network structures. We build upon the elegant framework by Ballester

et al. (2006) where a finite set of players with linear quadratic payoffs engage in a network game.

The network structure features local peer effects and summarizes the strategic interactions among

1Various consultants and digital marketing advisors provide guidelines for such influencers,
see, e.g., https://www.digimind.com/influencers-identification, https://shanebarker.com/blog/

detailed-strategy-find-right-influencers-for-your-business/, and https://contentmarketinginstitute.

com/2016/06/identify-influencers-industry/.
2See, for instance, “Top Influencer Marketing Companies” by https://www.businessofapps.com/marketplace/

influencer-marketing/, and “38 Leading Influencer Marketing Agencies to Work With In 2021” via https://

influencermarketinghub.com/top-influencer-marketing-agencies/.
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players, and thus shapes the equilibrium actions. The peer effect is parameterized by a scalar

called the “initial peer effect parameter.” As in Zhou and Chen (2015), the network designer in

our baseline model can target a subset of players such that they move first, and their decisions are

observed by others.

This sequential decision making process is commonly observed in a variety of contexts. For

example, in the charity giving context, a classical example is Brook Astor, an American Philan-

thropist, whose donations were frequently reported in the news and followed by others to copy her

contribution.3 The rationale is that people are by and large “conditional collaborators”: they con-

tribute to the public goods only when others have done so (Gächter et al. 2010).4 In the teamwork

and organizational design contexts, some individuals can lead by example, volunteer the tasks,

choose efforts prior to others, and make contributions before others take actions (Hermalin 1998).

In the global environmental context, Potters et al. (2007) reported that “a nation may be first to

commit to participation in an international environmental agreement.”

Our main result is simple to state. For any targeting problem, we can equivalently represent a

positive scalar such that the efforts with such targeting/seeding has the same aggregate effort as

multiplying the peer effect parameter by this scalar. We call it relative network synergy equivalent

(RNSE).5 The main message is this index, for any targeting policy on the network space, has a

constant upper bound,
√

2 ≈ 1.414, which holds for any network, any intrinsic valuation profile,

and any initial peer effect parameter. In other words, about 41.4% increase in the magnitude of

the peer effect is the upper bound on the value of any targeting policy. Because this bound applies

to the optimal targeting as well, it provides a quantitative limit on the value of network-based

targeting.

Moreover, this upper bound is tight : there exists a scenario with RNSE which can be arbitrarily

close to this upper bound. Therefore, although it is valuable to use targeting based on network

information, we show that the value of such network-based targeting may be rather limited. Along

the process we also show that the first-best outcome has an RNSE of 2 for every network game

studied here. Therefore, the gap between the optimal targeting outcome and the first-best is uni-

versally bounded below by 1 −
√

2/2 ≈ 29.3%. Incidentally, the pursuit of constant performance

bound (that is independent of problem specifications) lies in the core of the computer science litera-

ture when developing approximation algorithms (Williamson and Shmoys 2011) and characterizing

price of anarchy (Koutsoupias and Papadimitriou 1999).

We extend our results along various dimensions. First, we study the pricing of a monopolist

selling social products. In this case, the designer’s objective becomes revenue maximization rather

3A New York Times article states that “[w]hen she gave one donation to the New York Library, for example, three
other major gifts – from Bill Blass, Dorothy and Lewis B. Cullman, and Sandra and Fred Rose – all followed, with
her generosity cited as the inspiration” (March 30, 2002, p. A13).

4List and Lucking-Reiley (2002) showed that initial charity contribution is positively correlated with the subsequent
amount. Soetevent (2005) found that for church donations, making the process open increases the total amount.

5This notion is similar in spirit to notions like equivalent variation (EV) and compensating variation (CV) in
industrial organization, which measure the economic welfare changes associated with changes in prices.
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than aggregate action maximization. Second, we examine the case when there is a cost of intervening

that is increasing in the number of nodes that need to be seeded. We allow for arbitrary costs of

seeding. Third, we consider an alternative benchmark – randomly seeding a fixed number of players

– rather than the benchmark of everyone being a seed. Fourth, we consider the general sequential

problem with multiple stages of moves; i.e., players are split into more than two groups and move

sequentially according to their designated group order. Furthermore, players can be endowed

with heterogeneous marginal utilities. In this case, the targeting involves the design of the entire

hierarchy as well as whom to be included in each stage.

We show that
√

2 remains the (uniform) upper bound for all the above extensions. Though

this observation does not reject the usefulness of targeting and the associated refinements, they

have limited value in a variety of scenarios. As another robustness check, we consider the extension

when the designer lets some seed players to revise their actions at the later stage. We find that it

is not beneficial for the designer (nor any player) to allow for multiple moves and revisions. Thus,

if a targeted node can choose between having the flexibility to revise or giving up this option, the

targeted node will surrender the option. We also consider a variant in which targeted players can

only increment their chosen actions in the later stage. We find that in this case, all targeted players

will choose not to increment in the later stage. In both scenarios, being targeted and moving

in the early stage complies with the players’ self-interest, and the planner’s arrangement will be

voluntarily executed.

To apply our results, it is notable that the environments need to satisfy the following conditions:

adoption decisions involve players choosing the magnitude of behavior; decisions have positive

complementarities; a designer can control who moves first and who moves second; and this decision

can neither be delayed nor revised by the players. As described above, even though each node

can make continuous contributions in multiple opportunities, only one-time contribution for each

node will be observed. The key point is that the designer or the central planner can indicate which

player (players) should move first; the targeted players will follow through the planner’s plan. In

Section 3, we describe specific applications and practical examples that fit these conditions.

Our analysis not only suggests the limit of targeting value, but also offers a quantitative goal

to invest in peer effect enhancing technology. Our proposal may be more advantageous than other

tactics in certain scenarios. As aforementioned, targeting requires detailed knowledge of network

structure that can be challenging to obtain. Adding more seeds randomly is handy, but it requires

accurate knowledge about the total network size, and the performance can be guaranteed only in

the limiting regime with very large network sizes. In contrast, our result does not rely on asymptotic

arguments and holds for arbitrarily small networks.

The paper proceeds as follows. Section 2 reviews relevant literature. Section 3 presents the

model with detailed analysis in Section 4. Some extensions are discussed in Section 5. Section 6

concludes. The Appendix contains some of the results and proofs omitted in the main text.
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2 Literature Review

The literature on network externality started with aggregate effects (i.e., the aggregate number

of players in the game is a sufficient statistics of this effect); see, e.g., Rohlfs (1974), Katz and

Shapiro (1985), Farrell and Saloner (1986), and the survey by Economides (1996). Ballester et al.

(2006) introduce a tractable model to incorporate the local network effects and characterize the

Nash equilibrium actions through the measure weighted Katz-Bonacich Centrality. Candogan et al.

(2012) and Bloch and Quérou (2013) add the monopoly firm’s pricing problem to this simultaneous-

move network game and investigate the benefit of discriminatory pricing.

The possibility of sequential moves among players is introduced by Zhou and Chen (2015), which

shows that, (1) the benefit of sequentiality in network games with strategic complementarity and

positive spillover; (2) for moderate degree of externalities, the optimal leader group selection prob-

lem, is equivalent to the weighted max-cut problem; (3) sequence refinement is always beneficial.

Our paper is closely related to Zhou and Chen (2015), and we show that regardless of the network

structure and the sequence of moves, the value of such targeting and sequentiality, measured by

the proposed RNSE index, is limited by a constant bound.

Because in the application we allow the designer to also set network-based price discrimination,

our paper is related to the literature on the value of network information in pricing, diffusion of

products. Bloch (2016) offers a recent survey on targeting and pricing in social networks. Huang

et al. (2019) investigate the benefit of network-based price discrimination in large random networks,

and find that it decays quickly in the network size. Belhaj and Deröıan (2018, 2019) study the

optimal contract design and targeting on a network with local synergies. The possibility of offering

the products sequentially is studied in Aoyagi (2010). In his model, customers have interdependent

values and possess some private information. Thus, sequential launch allows late customers to learn

from early customers’ decisions. In our paper, this social learning channel is absent, and we show

that with payoff externalities sequential selling has limited value.

There are alternative types of targeting or interventions, see, among others, Bloch (2016),

Demange (2017), and Galeotti, Golub, and Goyal (2020). Demange (2017) considers a setting in

which players react to their neighbors’ actions according to given reaction functions. The planner

can intervene the network game by boosting directly players’ reactions. Galeotti, Golub, and Goyal

(2020) study a network game in which players’ payoffs contain a private return and externalities

that arise from neighbors’ actions. They focus on a different type of intervention: the planner’s

budget is spent to increase the marginal returns of players’ private payoffs. The planner’s objective

in Demange (2017), as in our baseline model, is to maximize the aggregate action, while in Galeotti,

Golub, and Goyal (2020) the planner maximizes certain welfare objectives. Because both games in

Demange (2017) and Galeotti, Golub, and Goyal (2020) involve strategic complementarities, either

directly enhancing the players’ reactions or indirectly raising the returns to actions will increase

players’ actions. Thus, targeting is necessarily beneficial, and more budgets unambiguously result
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in higher aggregate actions. Specifically, Galeotti, Golub, and Goyal (2020) consider both strategic

complements and substitutes, and characterize the optimal targeting strategies using either the first

or the last principal component of the underlying network. In contrast, targeting in our context

does not impact a player’s intrinsic payoff or reaction to neighbors’ actions. The planner needs to

leverage the positive feedback through the leader-follower interactions.

In terms of the limited value of network information, our paper is related to Akbarpour, Mal-

ladi, and Saberi (2020), who evaluate the effectiveness of seeding in diffusion of information on

networks. They consider a family of diffusion models wherein players spread information stochasti-

cally, and the designer determines seeding to maximize the expected coverage (see Sadler (2020) for

recent theoretical development of the diffusion game on networks). As in the Susceptible-Infected-

Recovered (SIR) model, after a single exposure to someone else who has already adopted in the

network, a player must adopt. They observe that in diffusion models the success of seeding utilizes

the structure of clustering. Intuitively, when there are giant clusters, optimal seeding will certainly

target these clusters, but random seeding will very likely hit them too. When all cluster sizes are

small, even with optimal seeding the spread is rather limited. They show that adding a relatively

few more seeding is better than optimally selected seeding which requires information about the

network knowledge. Beaman, BenYishay, Magruder, and Mobarak (2021) point out that the above

“simple contagion” condition is key, and investigate the targeting effect on technology adoption

in the agriculture sector. They find that if adoptions happen only when a player is exposed to at

least two neighbors who have adopted (complex contagion), targeting may significantly improve

technology diffusion. In both contagion models, having more seeds weakly improves the aggregate

adoptions because exposures are necessary. In a very different setting, our constant performance

bound is irrespective of the clustering properties, and it applies to arbitrary networks without

resorting to the limiting regimes.

Our paper speaks to some recent empirical literature on the value of network information in

development economics. As discussed, Beaman et al. (2021) conducted field experiments in Malawi

and evaluated the use of diffusion models on rich social networks for technology adoption. Alatas

et al. (2019) tested how influential individuals’ tweets can promote the vaccination coverage in

Indonesia. Eckles et al. (2019) study the influence maximization problem, discuss the complexity

of seeding, and evaluate the effectiveness of algorithms. See also Chin et al. (2018) for the evaluation

of random seeding.

Finally, the limited value on sequentiality is also studied in the congestion games, where a group

of agents determine to send their traffic flows through a physical network. In these games, agents

experience congestion and share costs when their traffic flows share the same link, and the conges-

tion level of one link is determined by the aggregate flow through it. Leme et al. (2012) introduce

the sequential moves into congestion and cost-sharing games and show that the “sequential price

of anarchy” can be lower than the classical price of anarchy. Swamy (2012) examines the effective-
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ness of two-stage sequential moves and identifies constant performance bounds for series-parallel

networks, and problem-specific bounds for general networks. de Jong and Uetz (2014) focus on

atomic games (i.e., individual agent’s influence is not infinitesimal) and allow for general number of

rounds of sequential moves. They establish some constant performance bounds using the techniques

of mixed integer programming. In our paper, agents experience payoff externalities and thus the

network is defined based on their inherent relationships, and they make one dimensional decisions.

3 Model

3.1 Setup

We first present a baseline model of targeting in social networks, and then introduce an index to

measure the relative effectiveness of different targeting strategies.

The network game

Our baseline model setup follows closely from Ballester et al. (2006) and Zhou and Chen (2015).

Consider a game played on a non-empty network among a finite set of players N := {1, 2, · · · , n}.
We use the matrix G = (gij)1≤i,j≤n to represent the network structure. As is standard in the

literature, we assume that the network is undirected, i.e., gij = gji ∈ {0, 1}, and there is no self-

loop, i.e., gii = 0.6 Each player i ∈ N , represented as a node of the network, chooses an action

(effort) xi ∈ R and obtains the following utility:

πi(x1, x2, · · · , xn) = aixi −
1

2
x2i + δ

∑
j∈N

gijxixj . (1)

The first two terms in (1) collectively capture the diminishing marginal return of the player’s own

action, where the parameter ai > 0 measures player i’s intrinsic marginal utility of own action.

The last term captures the network complementarity effect among players, where the parameter

δ > 0 describes the strength of this peer complementarity effect. This specification of utility is

popularized by Ballester et al. (2006) and has been widely adopted in many papers; see, among

others, Bloch (2016) and Galeotti, Golub, and Goyal (2020). Note that the network structure G

summarizes the strategic interactions among players, and thus shapes the equilibrium actions.

Targeting

Following Zhou and Chen (2015), we consider a network designer who can influence the sequence

of moves in the underlying network game, and subsequently influence the equilibrium outcome, by

targeting a subset of players A ⊂ N . Effectively, the targeted players in A, called seeds, choose

their actions earlier than those players not targeted (in N\A). Formally, the targeting policy A
6Our main results can be easily extended to allow for weighted directed networks.
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selected by the designer determines the sequence of moves of a dynamic game specified as follows:78

• In stage 1, the players in group A choose actions simultaneously;

• In stage 2, the players in the rest of the network, N\A, choose their actions simultaneously.

The payoffs, as given (1), are realized after all actions are taken.

For this two-stage game, we apply the standard solution concept of subgame perfect Nash equi-

librium (SPNE). We defer the detailed equilibrium analysis such as the condition for existence and

uniqueness, and the explicit equilibrium formulae to the next section. For now, let x(G, δ,A; a) ∈
Rn denote the equilibrium action profile. Denote by x(G, δ,A; a) := 1′x(G, δ,A; a) ∈ R the equi-

librium aggregate action, where 1 is the n-vector of 1s.

Benchmark

We first analyze the benchmark case in which the designer does not target any player, i.e., A =

∅9, and thus all players choose actions simultaneously. Let λmax(G) denote the largest eigenvalue

of matrix G. Ballester et al. (2006) show that, when 0 < δ < 1/λmax(G), the simultaneous-

move network game admits a unique Nash equilibrium, which equals the Katz-Bonacich centrality

measure:10

b(G, δ; a) := (b1(G, δ; a), · · · , bn(G, δ; a))′ = [I− δG]−1a. (2)

Note that b(G, δ; a) = 1′b(G, δ; a) is aggregate equilibrium effort. This will be the network de-

signer’s objective in our base model. Maximizing aggregate action is a common goal for team

production, charity giving, public good contribution, and environmental policy engagement. It is

easy to see that, due to the strategic complementarity, each individual action bi(G, δ; a) and the

aggregate effort b(G, δ; a) strictly increase with δ.11 We exploit this monotonicity observation to

define the following index.

7We assume that the underlying network structure is common knowledge. Also, the set of seeds, once chosen by
the designer, is commonly known among all players.

8The targeting in our setting is closely linked to Stackelberg games and the value of commitment (see Bagwell
(1995)). See Section 4.5 for further discussions.

9Equivalently, the designer targets the whole network, i.e., A = N .
10Players’ best responses are determined by the first-order conditions of (1): xi = ai +δ

∑
j∈N gijxj , i ∈ N , which

leads to the equilibrium action profile x = [I− δG]−1a.
11More precisely, the inverse Leontief matrix associated with network G and parameter δ is

M(G, δ) := [I− δG]−1. (3)

Using a path-counting interpretation in Ballester et al. (2006), we observe that each entry mij of M represents the
discounted number of walks from i to j in network G with decay factor δ. When 0 < δ < 1/λmax(G),

[I− δG]−1 = I +

∞∑
k=1

δkGk. (4)

From the above expression, it is obvious to see that bi increases with δ.
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Definition 1. For each A ⊆ N , let γ(G, δ,A; a) be the unique positive scalar γ ∈ R+ such that

x(G, δ,A; a) = b(G, γδ; a). (5)

We call γ the relative network synergy equivalent (RNSE) of targeting A.

The basic idea of the definition of RNSE is straightforward. Fixing any network, a target-

ing/seeding policy may induce a different aggregate action than the benchmark outcome b(G, δ; a).

The index γ calibrates the multiplicative scalar of the network synergy parameter δ in the simultaneous-

move benchmark game with the same level of aggregate action. In addition, b(G, γδ; a) strictly

increases with γ, and approaches infinity when γ → 1
δλmax(G) , implying that the γ defined in (5)

exists, and is unique.

Zhou and Chen (2015) consider the following optimal targeting problem:

max
A⊆N

x(G, δ,A; a). (6)

In other words, the designer’s objective is to choose the set of seeds A to maximize the aggregate

action. Using the definition of γ, we have the following observation.

Lemma 1. The designer’s problem in (6) is equivalent to

max
A⊆N

γ(G, δ,A; a). (7)

Instead of solving for the optimal seeding strategy on a fixed network (which is analyzed in

Zhou and Chen (2015)), we are primarily interested in providing a tight upper bound for γ, which

shows the limit of targeting in networks.

Notation. Before we proceed, we introduce some notation that will be used throughout the

paper. For a matrix T, the transpose is denoted T′. The zero matrix/vector (of suitable dimensions)

is denoted 0. If T is a square matrix, then TD is a matrix with diagonal entries TDii = tii, i = 1, · · ·N,
and off-diagonal entries TDij = 0, ∀i 6= j. Unless otherwise indicated, the vector x = (x1, · · · , xN )′

is a column vector. For any subset S of N , xS (in bold) denotes the vector (xi)i∈S ; that is, it is a

sub-vector wherein the sequence of selected components follows their original sequence in the vector

x. The (non-bold) term xS =
∑

i∈S xi is the sum of these selected components. We let 〈x,y〉 denote

the inner product of two column vectors x,y. We say that two matrices T1 and T2 satisfy T1 � T2

if and only if T 1
ij ≥ T 2

ij for all i, j, and T1 � T2 if and only if T1 � T2 and T 1
ij > T 2

ij for some i, j.

In other words, these dominance relationships apply to the component-wise comparisons. Given a

real-valued function f , and an integer k, we write f(δ) = O(δk) if lim supδ→0

∣∣∣∣f(δ)

δk

∣∣∣∣ < ∞. When

a = 1n, we write b(G, δ; a) as b(G, δ), x(G, δ,A; a) as x(G, δ,A), and γ(G, δ,A; a) as γ(G, δ,A).
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3.2 Preliminary results

Below we discuss several properties of the index γ.

Remark 1.

(i) Scaling the marginal utility parameters a to ta (where t > 0) does not change the value

of γ. The fact that the index γ is a scalar enables us to make meaningful comparisons

across targeting policies within a fixed network, as well as across different networks for a

fixed targeting policy.

(ii) Proposition 1 in Zhou and Chen (2015) shows that targeting always increases the equilibrium

action profile, i.e., x(G, δ,A; a) ≥ b(G, δ; a). As a consequence, the index has a lower bound:

γ(G, δ,A; a) ≥ 1.

(iii) Let the first-best effort profile be xFB(G, δ; a), which maximizes the aggregate payoff

W (x) :=

n∑
i=1

ui = a′x− 1

2
x′x + δx′Gx.

The first-best effort profile is xFB(G, δ; a) = [I− 2δG]−1a = b(G, 2δ; a).12 In the same spirit

of Definition 1, we can define the RNSE index of the first-best outcome as γFB = 2. As

players in the benchmark case do not fully internalize the effects of their actions on other

players, under-provision of efforts, compared with the first-best outcome, is expected.

(iv) The equilibrium outcome x(G, δ,A; a) depends on G, δ, A, and a, so is γ. Obtaining a closed-

form expression of γ is generally hard. Nevertheless, our goal is to characterize a tight upper

bound of γ for a wide range of network games.

(v) Our RNSE index γ is micro-founded using the calibration exercise of the Katz-Bonacich cen-

trality measures (Ballester et al. 2006). When the set A is a singleton, the Katz-Bonacich

centrality bi, the inter-centrality index ci =
b2i
mii

, the key leader index Li =
b2i
mii

mii−1
2−mii

, and our

RNSE index γ({i}) are closely linked together.13 For any regular network, we have bi = bk

for any i, k. Furthermore, we can show the following simple relationship:

γ({i}) > γ({k})⇐⇒ Li > Lk ⇐⇒ mii > mkk ⇐⇒ ci < ck.

In other words, for any regular network in which bi is constant, both our RNSE index γ({i})
and the key leader index Li are correlated perfectly and positively with the self-loop mii, while

12Here xFB solves the first-order conditions: a−xFB + 2δGxFB = 0, implying xFB = [I−2δG]−1a = b(G, 2δ;a),
which is well-defined only when 0 < δ < 1/(2λmax(G)) (this condition also guarantees the strict concavity of W ).

13Ballester et al. (2006) characterize ci as the solution to the key player problem in criminal networks. Zhou and
Chen (2015) characterize Li as the solution to the key leader problem. We assume, for simplicity, ai = 1 for all i.
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the intercentrality index ci is correlated perfectly and negatively with mii. Since it is easy to

construct a regular network14 with heterogeneous mii’s, we can have instances in which the

correlation between γ({i}) and bi or the correlation between γ({i}) and ci are easily described.

Remark 1(iii) suggests that we can also define an index when comparing the gap between the

sequential launch outcome with the first-best scenario, and it has a simple expression: 1 − γ/2 ∈
[0, 0.5]. Opposite to γ, the higher the term 1− γ/2 is, the worse performance we obtain. Notably,

in the class of network games we consider, the equilibrium analysis requires a certain stability

condition on δ; i.e., δ > 0 cannot be too large (see Definition 2 and Corollary 1).

3.3 Discussions

The above model has some unique ingredients and deserve some further discussions. As afore-

mentioned, it requires (1) adoption decisions involve players choosing the magnitude of behavior;

(2) decisions have positive complementarities; (3) a designer can control who moves first and who

moves second; and (4) this decision can neither be delayed nor revised by the players. Below, we

highlight two contexts for which these conditions are appropriate: crowdfunding and charity giving.

Crowdfunding. Crowdfunding platforms host projects initiated by creators, and a project will

be realized only when the total funds it attracts from interested buyers reach a specified target (Hu

et al. (2015)). Interested buyers can choose to commit to an arbitrary amount (from 30 pounds

to over 150 pounds for a book in 2006, see Hu et al. (2015)); higher amounts result in quicker

accumulation of the total fund, lead to better chance for project success, and may bring higher

private benefits to the buyers (in the form of up-scale product or additional gifts). Crowdfunding

platforms such as Kickstarter typically publish the cumulative fund over time; thus, the decisions

of the earlier contributors (buyers) are observable to later buyers.

As described above, crowdfunding mechanisms have a built-in positive complementarity (projects

succeed only when the pledged target is met). There can also be inherent externalities from buy-

ers, too. For example, “[o]n the demand side, the product may exhibit positive externality” (Hu

et al. (2015)). Because contributions are solicited before the product is brought to market, buyers

must make investment decisions when facing information asymmetry (Chakraborty and Swinney

(2021)). As some buyers are more informed than others, observing the decisions by others can

generate information externality. Collectively, we feel that crowdfunding satisfies (1)–(4). Local

network effects again can arise when players value some decisions more than others.

Charity giving. Jack and Recalde (2015) study the public good provision in 52 communities

in Bolivia. The choice of each player is how much money to contribute to provide environmental

education books for the local school, and “even small contributions could ensure positive levels

of provision.” Thus, it satisfies (1): the contributions are not binary, but rather a magnitude of

behavior. Environmental education books are non-excludable and generate social spillovers because

14See, for instance, Figure 1 in Zhou and Chen (2015).
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“all community members can access the education material available in the local school.” Thus,

“donations generate a positive externality that is non-rival.” This satisfies (2): decisions have

positive complementarities.

Moreover, in these communities “an authority makes an initial public voluntary contribution

– and other groupmembers make private voluntary contributions after observing the authority’s

choice.” Because participants “are given the opportunity to make voluntary contributions to acquire

environmental education books for the local school,” once a contribution is made, each player cannot

revoke or revise the amount. This simultaneously satisfies (3) and (4): the designer can control

who moves first and who moves second, and this decision can neither be delayed nor revised by the

players.

Jack and Recalde (2015) also make empirical observations that are consistent with the theoret-

ical predictions in this literature: targeting the community leaders can increase the public goods

contribution (compared with the simultaneous benchmark), and “follower contributions are less

strongly influenced by the contributions of randomly selected leaders.” This implies that network

effects are local rather than global, because players have differential influences on or are differen-

tially affected by others.

4 Analysis

4.1 An illustrating example: a dyad network

Before stating our main results in the general network, we first consider the simplest case of a dyad

network with two players, where G =

(
0 1

1 0

)
.

Example 1. In a dyad network, the equilibrium actions in the simultaneous-move game are

x1(δ) = b1(δ) =
a1 + δa2
1− δ2

, x2(δ) = b2(δ) =
a2 + δa1
1− δ2

.

Suppose A := {1}; i.e., player 1 moves first, then 2 follows. The equilibrium actions in the

sequential game are15

xS1 (δ) =
a1 + δa2
1− 2δ2

, xS2 (δ) = a2 + δxS1 =
δa1 + (1− δ2)a2

1− 2δ2
. (8)

Assume a1 = a2 = 1. Observe that

(a) For the leader (player 1)’s action, we have

1 + δ

1− 2δ2
= xS1 (δ) < b1(

√
2δ) =

1 +
√

2δ

(1− (
√

2δ)2)
.

15Anticipating the player 2’s best response, a2 + δx1, the player 1, as the first mover, chooses xS1 to maximize
a1x1 − 1

2
x21 + δx1(a2 + δx1), which leads to xS1 as given in (8).
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(b) Similarly, for the follower (player 2), we have

xS2 (δ) = 1 + δxS1 (δ) < 1 + δb1(
√

2δ) < 1 +
√

2δb1(
√

2δ) = b2(
√

2δ),

where the first equality is by the best response of player 2, who moves after the player 1 in

the sequential game with synergy parameter δ; the first inequality is by previous step (a);

the second inequality is by
√

2 > 1; and the last equality is by best-response of player 2 with

synergy parameter
√

2δ in the static NE.

(c) Combining items (a) and (b) yields

xS(δ) ≺ b(
√

2δ),

which implies that

γ(G, δ;A) <
√

2.

(d) By Definition 1, γ is the scalar that satisfies xS1 (δ) + xS2 (δ) = b1(γδ) + b2(γδ), which reduces

to the following (recall that we have assumed a1 = a2 = 1)

2(1 + δ)− δ2

1− 2δ2
= 2

1 + γδ

1− γ2δ2
.

In other words,

γ(G, δ;A) :=
2 + 3δ

2 + 2δ − δ2
. (9)

The RHS of (9) increases in δ, and it equals 1 when δ = 0, and converges to
√

2 as δ →
√

1/2

(see Figure 1).16

In this example, an upper bound of γ is
√

2. This example also admits a lower bound of 1, and

it brings in the negative news. Namely, there exists a scenario in which the improvement by the

optimal targeting is minimal, and the gap from the first-best outcome attains the maximum value

50%. This worst case occurs when the initial peer effect parameter δ is very small, i.e., the synergy

is negligible.

Our main analysis mostly explores the benefit of targeting on promoting aggregate effort. Some-

times a well-intended designer may have alternative objectives in mind when constructing the

optimal targeting; for instance, she may want to reduce inequality in the outcome (or welfare)

distribution. As a detour before our main result, we illustrate the implications of targeting on

alternative objectives such as inequality/distribution in the following example.

Example 2. Consider the Dyad network as in Example 1 and let A = {1}. We discuss two cases.

16Note that, to satisfy permissibility (see Definition 2), the range of δ is [0, 1/
√

2).
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Figure 1: Dyad network. The red solid curve is the index γ(·) given in (9). The x-axis is δ. Two

horizontal lines are lower bound 1 (in dotted grey), and upper bound
√

2 (in dashed blue).

(i) Suppose a1
a2

= 1. In the benchmark case with no targeting, the equilibrium effort is symmetric

– there is no inequality. However, with A = {1} targeted, player 1’s equilibrium action is

strictly higher than that of the follower (player 2); i.e., xS1 > xS2 .

(ii) Suppose a1
a2

= 1−δ−δ2
1−δ , with 0 < δ < 0.618 so that 1− δ > 1− δ− δ2 > 0. In the benchmark

case with no targeting, player 1 exerts a strictly lower effort: b1 < b2 as a1 < a2. On the

other hand, with A = {1} targeted, both players exert the same amount of effort in the unique

SPNE outcome.

Observe that targeting can either increase inequality as in case (i) or reduce it as in case (ii).

4.2 Main results: A universal and tight upper bound for γ

First, we start with a result in Zhou and Chen (2015):

Lemma 2. For any A ⊆ N that is neither ∅ nor N ,

x(G, δ,A; a) � b(G, δ; a).

In other words, targeting is always valuable to the designer.

When A = ∅ or N , obviously x(G, δ,A; a) = b(G, δ; a). Targeting has no additional value

when either none or all agents are selected as targets. Henceforth we focus on the case A 6= ∅
or N . The intuition behind Lemma 2, as shown in Zhou and Chen (2015), is quite simple. Note

that a player’s payoff is supermodular in her own action and her neighbors’ actions, and exhibits

positive spillovers. Due to strategic complementarity, the followers’ responses in the second stage

monotonically increase with the actions taken by the seeds (or first-movers, leaders) in the first

14



stage. Due to positive spillovers, the seeds, anticipating these strategic responses from followers,

have stronger incentive to exert higher actions than what they would do in the simultaneous-move

case.17 As a result, targeting is always valuable: for any network G and any A ⊆ N that is neither

∅ nor N ,

γ(G, δ,A; a) > 1.

Definition 2. A two-stage network game (G, δ;A) is permissible if it has a (bounded) SPNE; i.e.,

the equilibrium actions do not go to +∞.

Next, we present a uniform upper bound of γ for the class of permissible two-stage network

games we study.

Theorem 1. For any permissible two-stage network game (G, δ,A; a),

γ(G, δ,A; a) <
√

2.

Moreover, the next theorem shows that this upper bound is tight.

Theorem 2. For any ε > 0, there exists a permissible two-stage network game (G, δ,A; a) with

γ(G, δ,A; a) >
√

2− ε.

These findings directly imply the following.

Corollary 1. The two-stage network game (G, δ,A; a) is permissible if

δ <

(
1√

2λmax(G)

)
.

Corollary 1 provides a simple-to-check sufficient condition for permissibility in Definition 2,

which does not rely on A. However, the stated condition is usually not necessary for specific A and

G.

Corollary 2. Regardless of the selection of A, the targeted sequential launch cannot achieve first-

best.

Proof: The first-best outcome can be viewed as a policy with γFB = 2 (see Remark 1 (iii)). The

result follows directly as γ <
√

2 < 2.

Finally, we can provide an upper bound for the value of the optimal targeted sequential launch

problem.

17See Echenique (2004) for a related discussion of strategic complementarities in extensive-form games.
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Corollary 3. For all G and δ ∈ [0, 1/(2λmax(G))),

max
A⊆N

x(G, δ,A; a) < b(G,
√

2δ; a) < xFB(G, δ; a).

Proof: Since γ(G, δ,A; a) <
√

2 < 2 for any A ⊆ N , the result just follows.

We discuss some economic implications of Theorems 1 and 2.

(i) The identified upper bound of γ is “universal” as it applies to any network G, any targeting

policy A, and any profile of marginal utility a. Indeed, this bound does not require players’

marginal utility from action to be homogenous. And it holds even without any knowledge of

the underlying network.

(ii) Consider a designer who faces the choice between two options: (A) Synergy improvement

technology that increases δ by
√

2 − 1 ≈ 41.4%; (B) Sequential launch using network-based

targeting. Our analysis shows that the benefit of option (A) dominates (B) as it induces

higher total action. However, whether option (A) is indeed better than (B) depends on other

economic factors. One obvious concern, which we do not consider in the baseline model, is

the cost side. For option (A), the cost is the investment in synergy-improving technology. For

option (B), typical cost includes implementation of targeting intervention, the computational

cost of finding the optimal targeting policy, and the resources spent to collect data about the

underlying network. We explicitly model the cost of seeding in an extension in Section 5.2.

4.3 Main idea behind the proof of Theorem 1

The key result is Theorem 1. The main idea of its proof is as follows.

Fix any network G, γ > 0 that satisfies Definition 2 , and a ∈ Rn++. Consider the two-stage

sequential game with players in A ⊆ N are targeted and move first, and players in B = N\A follow

after observing their actions.

The equilibrium action profile in the simultaneous-move game with a scaled parameter γδ > 0

is

b(γδ) = M(γδ)a = [I− γδG]−1a,

which is positively linear in a and strictly increasing in γ. The SPNE action profile in the associated

two-stage game with the unscaled synergy parameter δ > 0 is

xS(δ) = Z(δ)a,

which is also positively linear in a. Here the matrix Z is determined in Zhou and Chen (2015), and

it depends on G,A, and δ.
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By definition, the RNSE index γ(G,A, δ; a) is a positive multiplicative scaling of the synergy

parameter δ, where the aggregate equilibrium action in the simultaneous-move game with synergy

γδ and in two-stage sequential game with synergy δ are equal, i.e.,

1′b(γδ) = 1′M(γδ)a = 1′Z(δ)a = 1′xS(δ).

Notice that if we can show that for all permissible (G,A, δ),

(?) M(
√

2δ) � Z(δ),

then
√

2 > γ(G,A, δ; a) holds for all permissible (G,A, δ) and all a (see Appendix B.1).

To prove statement (?), we divide Z(δ) and M(
√

2δ) (as well as G) into four sub-blocks by the

leader group A and the follower group B.18 The former is the SPNE characterized by Zhou and

Chen (2015). Under block-by-block comparison of Z(δ) and M(
√

2δ), after eliminating common

terms, a sufficient condition for (?) is

√
2δT(

√
2δ) � δ(T(δ) + T(δ)D) (10)

where

T(δ) = GAA + δGAB[I− δGBB]−1GBA.

(Recall that QD denotes the diagonal component of a matrix Q.) The first (constant) term of T

satisfies
√

2δGAA % δ(GAA + GD
AA), because all diagonal terms of the network matrix GAA are 0.

For the second term of T involving the parameter δ, we observe that all matrices are non-negative

and [I−δGBB]−1 is increasing in δ. Substituting T(δ) and T(
√

2δ) into (10), it is straightforward to

verify that the proposed dominance relation hold. The details of the proof is relegated to appendix

A.1.

4.4 The case with small synergy

Define

CUT(A) :=
∑
i∈A

∑
j∈N\A

gij ,

where CUT(A) counts the number of links across agents in A and its complement N\A.

18That is, we can express the matrices as G =

(
GAA GAB

GBA GBB

)
, Z(δ) =

(
ZAA ZAB

ZBA ZBB

)
, and M(

√
2δ) =(

MAA MAB

MBA MBB

)
.
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Lemma 3. Suppose ai = a for all i ∈ N , the following holds:19

γ(G, δ,A) = 1 +

(
CUT(A)

1′G1

)
δ +O(δ2).

There exists a cutoff δ̄ > 0 such that, for any 0 < δ < δ̄, γ(G, δ;A) strictly increases with δ.

When δ is small, γ(G, δ,A) has a simple approximation form, which is linear in δ with the

coefficient equaling the ratio of CUT(A) and 1′G1. Note 1′G1 equals two times the total number

of links in G. This simple approximation formula gives several economic insights about the effects of

δ and the underlying network structure on the index. If δ = 0, each player has a dominant strategy,

and thus targeting has no impact at all. When δ > 0, the Stackelberg incentive of leaders/seeds

drives the positive value of targeting. The fact that the index γ(G, δ;A) strictly increases with δ

suggests that network targeting is more useful in some settings than others.20

Fixing a targeting policy A, as we add more links to the network G, both the number of cross

links, CUT(A), and the total number of links, which is one half of 1′G1, increase. The ratio above,

however, can potentially move in either direction. In the observation below we summarize two cases

in which the change of the ratio, hence the index γ for small enough δ, has a predictable direction.

Observation 1.

(i) Suppose all the new links are built within the non-targeted nodes in N\A, so CUT(A) remains

the same, while 1′G1 increases. In this case, the γ index clearly goes down. Similarly, γ index

goes down if all the new links are formed within the targeted nodes in A.

(ii) Suppose all the additional links are built across A and N\A. Then both CUT(A) and the total

numbers of links go up. But it is easy to show that the ratio always increases, implying that

γ index goes up.21

We illustrate these two cases in the following Example.

Example 3. Suppose there are three nodes in the network, the seeding set A = {1}, and agents

have homogeneous marginal utility normalized to 1 (i.e., ai = 1 for all i). Consider respectively the

complete network (Figure 2), star network (Figure 3), and an extended Dyad network with a third

isolated node (Figure 4).22

19The extension of Lemma 3 with heterogeneous ai’s is straightforward.
20We are grateful to Evan Sadler for this observation.
21Suppose k additional links are formed between A and N\A, then CUT(A) increases by k and 1′G1 increases by

2k. The new ratio CUT(A)+k
1′G1+2k

≥ CUT(A)
1′G1

as the original ratio is always less than 1/2.
22The associated network structures are

Gc =

0 1 1
1 0 1
1 1 0

 , G∗ =

0 1 1
1 0 0
1 0 0

 , GDyad =

0 1 0
1 0 0
0 0 0

 .
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Appendix A.4 provides computations for the NE in the simultaneous-move game and the SPNE

in the sequential-move game for each of the networks. Using its definition, we can obtain the exact

γ(G, δ;A) for each case. Figure 3 below compares the curves of index γ as functions of δ among

these three networks. We list a few observations:

(i) For small δ, the γ functions for the star and Dyad networks coincide and are valued higher

than the curve for the complete network, confirming the intuition of Lemma 3.

(ii) For larger δ, the ranges of permissible δ for the three networks can differ. The γ index (as a

function of δ) of the star network dominates those of the complete network and the extended

Dyad network, for all permissible δ. Moreover, between the complete and extended Dyad

networks, neither of the associated γ indices dominates the other for all permissible δ.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
δ

1.0

1.1

1.2

1.3

1.4

1.5
γ

Dyad

Complete

Star

Figure 5: Plot of γ as functions of δ for the complete, star, and extended Dyad networks, where
n = 3 and A = {1}. The dotted black curve is the γ function in the extended Dyad network. The
solid red curve is the γ function in the star network. The dashed curve in blue is the γ function in
the complete network.

Finally, for small δ, we apply Lemma 3 to compute the linear approximations of γ(·) in Table

3 below. The comparison between the three linear approximations exactly matches observation (i)

in the figure above.
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network CUT # of links approx. γ(·)
Complete Gc 2 6 1 + 1

3δ

Star G∗ 2 4 1 + 1
2δ

Dyad GDyad 1 2 1 + 1
2δ

Remark 2. Zhou and Chen (2015) show that, when the synergy parameter δ is moderate, Problem

(6) is equivalent to the following MAX-CUT problem:

max
A⊂N

CUT(A)

For general networks, solving the above MAX-CUT problem is computationally hard as it is a well-

known NP-hard problem. That is, the complexity of Program (6) quickly explodes when we increase

the network size n. Thus, for practical purposes, we have to resort to heuristics to find a targeting

strategy A that is reasonably close to the optimal one. In contrast, the upper bound of γ we find

in Theorem 1 does not require knowing the optimal A∗. This is particularly desirable because it

bypasses the challenging computational problem and does not require the detailed knowledge of the

network structure.

4.5 Revisions and commitment

In this section, we relax the assumption that each node is only allowed to move once. The designer

lets some seed players to revise their actions at the later stage, while payoffs are still determined

by the final action chosen.23

Suppose that the designer allows some seed players in A to move again in stage 2. Formally, the

designer chooses nodes A ⊆ N to move in stage 1 and B ⊆ N to move in stage 2, where A∪B = N .

If A ∩ B = ∅, then we are back to our main sequential model. Nevertheless, if some seeds are also

in the follower set B, then the game allows for revision of actions by these players. That is, every

player i in A∩ B can act twice: He can first choose an action xi,1 at stage 1, which is observed by

all players at the beginning of stage 2, and then revise this action to some other xi,2 at stage 2. We

denote by xi,t player i’s action if he is called upon to move at stage t = 1, 2. Assume payoffs are

determined only by the last action taken by each player. That is, let x = ((xj,1)j∈A\B, (xj,2)j∈B)

be the profile of last actions chosen by players, and the payoff function ui(·) depends only on this

action profile x. Assume all these aspects of the game are common knowledge to all players.

We start with a simple example to illustrate the main idea.

Example 4. Consider again the Dyad network as in Example 1 with A = {1} and B = {1, 2}.
Then the sequence of moves is as follows: At stage 1, player 1 chooses x1,1; at stage 2 both players

choose simultaneously the action profile (x1,2, x2,2). In particular, player 1 is free to revise his

23We thank an anonymous referee for suggesting these possibilities.
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earlier action x1,1 to x1,2 at stage 2. The payoff of player i is given by the profile of last actions

chosen ui(x1,2, x2,2).

The action space for each player is R+. A history at stage 2 is h2 = (x1,1). Player 1’s strategy

is (s1,1, s1,2(x1,1)), where s1,1 ∈ R+, s1,2 : R+ 7→ R+. Player 2’s strategy is s2,2(x1,1), where

s2,2 : R+ 7→ R+.

Consider the subgame at history h2 = (x1,1). Note that both players’ final payoffs do not directly

depend on x1,1. Hence x1,1 is a payoff irrelevant signal that is observed by both players at stage 2.

Therefore, dropping the stage subscript, the stage 2 subgame at every history is equivalent to the

original simultaneous-move game with (X1 = R+, X2 = R+, u1, u2), which has a unique NE

(b1, b2) =

(
a1 + δa2
1− δ2

,
a2 + δa1
1− δ2

)
.

So (b1, b2) is the unique NE outcome in the subgame at each history (x1,1). By backward induc-

tion, at stage 1, player 1 will choose an arbitrary x1,1 knowing that this action is payoff irrelevant

and it will not affect the NE outcome at stage 2. A SPNE of this modified game is s1,1 ∈ R+,

s1,2(·) = b1 and s2,2(·) = b2.

Finally, in the two-stage game with overlapping target (A,B) = ({1}, {1, 2}), the equilibrium

aggregate effort b1 + b2 is strictly lower than that in Example 1; hence, the designer is worse off

here. Proposition 1 below also shows that both players are strictly worse off here.

To precisely describe a general two-stage game with revision (G, δ,A,B; a), we introduce some

more notation. A history at the beginning of stage 2 is h2 = (xi,1)i∈A that belongs to the set

H2 = (Xi)i∈A (where Xi = R+). Histories are perfectly observable by all players in the game.24

Hence, players’ strategies are: (i) s1i ∈ R+ if i ∈ A\B; (ii) s2i : H2 7→ R+ if i ∈ B\A; and (iii) (s1i , s
2
i )

such that s1i ∈ R+, s
2
i : H2 7→ R+ if i ∈ A ∩ B. Denote by s some strategy profile in this game.

Let s̃ denote a SPNE of this game and let x̃ = ((x̃1j )j∈A\B, (x̃
2
j )j∈B) denote the last action chosen

by each player in this equilibrium. Only the equilibrium outcome x̃ is payoff relevant. Again the

designer aims to maximize total equilibrium effort x̃ = 1′x̃.

The next result says that every game with overlapping target induces the same payoff-relevant

equilibrium outcome as an equivalent baseline targeting game without revision (i.e., all the players

are only allowed to move once when asked).

Lemma 4. For any permissible two-stage game with overlapping target (G, δ,A,B; a), the SPNE

outcome

x̃(G, δ,A,B; a) = x(G, δ,A\B; a).

Intuitively, in the game (G, δ,A,B; a) every player i ∈ A ∩ B is asked to move twice: First,

he chooses action xi,1 in stage 1 with all agents in A; Second, he may revise this action to xi,2

24As critically pointed out by Bagwell (1995), when histories are imperfectly observable with a small noise, the
SPNE outcome in the sequential-move game can be equivalent to the NE in the simultaneous-move game – that is,
the Stackleberg first-mover advantage may disappear.
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in stage 2 after observing (xj,1)j∈A from stage 1 and knowing that all agents in A ∩ B can revise

their actions in stage 2. All actions xi,1 taken in stage 1 by players in A∩B are simply cheap talk

messages that they cannot commit to until the end.25 Hence, in equilibrium all followers will ignore

these actions and only best respond to the credible actions (xj,1)j∈A\B chosen by players in A\B.

The SPNE outcome of the game with A lead and B follow is equivalent to that when the designer

chooses to only let A\B lead and the rest, B, follow.

Definition 3. For each pair (A,B) with A ∪ B ⊆ N , let γ̃(G, δ,A,B; a) be the unique positive

scalar γ such that

x̃(G, δ,A,B; a) = b(G, γδ; a). (11)

We call γ̃ the relative network synergy equivalent (RNSE) of overlapping target (A,B).

Theorem 3. For all permissible two-stage game with (possibly overlapping) target (A,B),

γ̃(G, δ,A,B; a) = γ(G, δ,A\B; a)

Proof. It follows directly from Lemma 4 and the definition of γ̃.

By virtue of Theorem 3, all our previous results about γ apply to γ̃ . In particular,
√

2 is a

tight upper bound of γ̃.

Remark 3. In the game (G, δ,A,B; a), allowing a player i ∈ A ∩ B to move in both stages

undermines the credibility of his earlier action xi,1. When player i has the flexibility to revise

his action in the later stage, he can no longer credibly commit to his earlier choice.

When all agents can revise their decisions, that is, B = N , the game is outcome equivalent to

the simultaneous-move game. In that case, γ̃ = 1 and targeting has no value. Clearly, the designer

is worse off as the aggregate effort is lower than that in the baseline game (G, δ,A,N\A; a).

In addition, the next proposition shows that every player is hurt by the opportunity to revise

his action. If the seeds have the option between delaying his decision and acting first, they would

prefer acting first.

Proposition 1. Compared with the game (G, δ,A,N\A; a), every player’s equilibrium payoff is

strictly lower in the game (G, δ,A,N ; a).

Proof. It follows directly from comparing parts (i) and (ii) of Lemma 5 in Appendix A.6.

To see the intuition, consider the special case when there is only one seed player A = {i}. For

the seed player i, he could always choose his Nash equilibrium effort bi in the simultaneous-move

25All other players know that players in A ∩ B cannot commit to their stage 1 action when given the opportunity
to revise at stage 2, and players in A ∩ B know that other players know that they cannot commit and may revise
action later if it is beneficial to do so.
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game, and the other players will best respond in stage 2 by choosing their simultaneously-move Nash

equilibrium effort b−i. Thus, the simultaneously-move Nash equilibrium outcome (bi, b−i) is feasible

for player i, but he can act first and achieve the strictly higher SPNE effort (xSi , x
S
−i). Since xS is

the unique SPNE, player i is strictly better off at outcome (xSi , x
S
−i) than (bi, b−i). Alternatively, if

player i delays decision till stage 2, he only gets the NE outcome (bi, b−i). This echoes the familiar

intuition for the Stackleberg first-mover advantage. In our setting, the followers also benefit from

a higher action by the leader, due to strategic complementarity and positive spillovers.

The argument for the general case with non-singleton A is similar, but more involved. One

caveat is that a leader i ∈ A cannot induce the NE outcome and payoff by deviating to bi due to

the presence of other leaders. See Lemma 5 in Appendix A.6 for details.

A variant of the above analysis is to only allow for xi,2 ≥ xi,1. In other words, targeted players

can only increment their chosen actions in the later stage, which is often the case in crowdfunding

or charity giving. This monotonicity constraint partially restores some commitment power of the

first-mover(s). To illustrate, consider again the Dyad network in Example 4. Assume that at stage

2 player 1 can only revise upward his earlier action (i.e., x1,2 ≥ x1,1). Clearly, player 1 benefits

strictly from choosing at stage 1 the higher SPNE action xS1 rather than the equilibrium action b1

in the no commitment case (or any other action). In fact, choosing x1,2 = x1,1 = xS1 is player 1’s

equilibrium action in this partial commitment case. Hence, the targeted players will choose not to

increment in stage 2 – they are expected to moves first and indeed have every incentive to move

first.

To summarize, if some node is granted the flexibility to revise action later, it undermines

the credibility of his earlier action, rendering this action meaningless. If a targeted node can

choose between having the flexibility to revise or giving up this option, the targeted node will

surrender the option and act immediately in stage 1. The finding suggests that being targeted and

moving in stage 1 complies with every player’s self-interest (as well as the planner’s goal), and the

planner’s arrangement will be voluntarily followed through. In other words, targeting leads to a

Pareto improvement and consequently will be welcomed (and perhaps endorsed) by everyone in the

network.

5 Extensions

5.1 Incorporating pricing

We consider a simple application of our results to a monopolist who sells network products to a

group of users. This is related to a number of widely-studied problems such as product diffusion,

referrals, and differential pricing for network goods, see, for e.g., Campbell (2013), Galeotti and
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Goyal (2009), and Lobel et al. (2017). We adopt the following payoff

πi(x1, x2, · · · , xn) = aixi −
1

2
x2i + δ

∑
j∈N

gijxixj − pixi.

Here pi is the per-unit price of user i. We assume that the firm can commit to the price vector

p = (p1, · · · , pn) in stage 0. Fixing the target A, the users play the consumption stages sequentially

as before, taking the prices as given. Let X(G, δ,A,p) be the corresponding demand profile induced

by the consumption subgame. The firm’s maximal profit is equal to

Π∗(G, δ;A) = max
p
〈p− c,X(G, δ,A,p)〉.

The benchmark case is A = ∅ which generates profit Π∗(G, δ; ∅).26

We can define γf in the same fashion as Definition 1 but from the perspective of the firm:

Π∗(G, δ;A) = Π∗(G, γfδ; ∅).

Without loss of generality, we assume c = 0 and a = 1n. The next theorem shows a strong mapping

between aggregate action maximization and revenue maximization.

Theorem 4. For any targeting strategy A, γf = γ.

By Theorem 4, all our previous results about γ apply to γf . In particular, the upper bound of

γ applies to γf . So the optimal monopoly profit with optimally designed sequential launch with δ

is dominated by the optimal profit with simultaneous launch with δ′ as long as

δ′ ≥
√

2δ.

Similar to our base model, one application of Theorem 4 is to compare two policies of a monop-

olist which sells social products to a group of consumers: (1) sequential launch, and (2) synergy-

improving technology: improve δ to δ′. Because of the strong connection indicated in Theorem 4,

the discussions and implications are all analogous in this revenue maximization context. Thus we

omit them to avoid redundancy.

5.2 Costly seeding

In the baseline model, we assume that seeding is costless. Do our main results extend to the case

with costly seeding? To answer the question, let ρ(A) ≥ 0 denote the cost of seeding A ⊆ N and

normalize ρ(∅) = 0.27 We incorporate the cost of seeding into the following definition of γ.

26Bloch and Quérou (2013) and Candogan et al. (2012) study the optimal pricing problem with simultaneous
consumption (A = ∅).

27One example is ρ(A) = t|A|, where t ≥ 0 is the constant marginal cost of seeding one node. Our results below
regarding costly seeding (Proposition 2) does not depend on any specific functional form, or monotonicity of ρ.
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Definition 4. For each A ⊆ N , let γρ(G, δ,A; a) be the unique positive scalar γ such that

x(G, δ,A; a)− ρ(A) = b(G, γδ; a). (12)

We call γρ the relative network synergy equivalent (RNSE) of targeting A with costly seeding.

Note that in the above definition, the benchmark is adjusting δ while not using any seeding;

i.e., A = ∅, in which case ρ(∅) = 0. Since seeding is costly, it is easy to see that γρ(G, δ,A; a) ≤
γ(G, δ,A; a) <

√
2.

Moreover,
√

2 is also a tight upper bound for γρ. To see this, recall the Dyad network from

Example 1 with A = {1} and a1 = a2 = 1. By definition, γρ(G, δ,A; a) solves the following

equation
2(1 + δ)− δ2

1− 2δ2
− ρ({1}) = 2

1 + γρδ

1− (γρ)2δ2
. (13)

The range of δ is [0, 1/
√

2). Note that as δ approaches 1/
√

2, γρ approaches
√

2. This is because the

left-hand side of (13) approaches to infinity as δ → 1/
√

2, and therefore limδ→1/
√
2(1−(γρ)

2δ2) = 0.

Consequently, limδ→1/
√
2 γρ =

√
2.

Summarizing the above discussions, we can show that both of our main findings in the baseline

model remain valid under costly seeding.

Proposition 2. With the presence of costly seeding, the following results hold.

(i) For any permissible two-stage network game (G, δ,A; a),

γρ(G, δ,A; a) <
√

2.

(ii) For any ε > 0, there exists a permissible two-stage network game (G, δ,A; a) with

γρ(G, δ,A; a) >
√

2− ε.

Remark 4. The above definition of γρ is from the perspective of a designer maximizing the aggregate

effort. Analogously, we could define an index, called γfρ , from the perspective of a monopoly firm

maximizing revenue as introduced in Section 5.1:

Π∗(G, δ;A)− ρ(A) = Π∗(G, γfρ δ; ∅),

where ρ is interpreted as the monetary cost of seeding. It is straightforward to see that our results

regarding costly seeding (Proposition 2) hold if we replace γρ by γfρ .

25



5.3 k-random seeding

In related recent work (Akbarpour et al. 2020; Beaman et al. 2021), optimal seeding is often

compared with random seeding (of the same size). To illustrate our findings in this context,

suppose now the benchmark is randomly seeding k nodes (instead of no seeding A = ∅). We can

redefine the RNSE index as follows.

Definition 5. For each A ⊆ N , let γk(G, δ,A; a) be the unique positive scalar γ such that28

x(G, δ,A; a) = Ek[x(G, γδ,B; a)], (14)

where B is a random subset with k nodes and the expectation E is taken for B. We call γk the

relative network synergy equivalent (RNSE) of targeting A with random k-seeding.

Obviously, when k = 0, the benchmark is no seeding. The index γ0 is the same as our RNSE

index γ proposed in Definition 1.

When k ≥ 1, γk defined above can be smaller than one, whereas γ is always weakly greater

than one. Comparing (14) and (5) (in Definition 1), we observe that the benchmark value is higher

with random k-seeding, implying that the corresponding index γk is always weakly lower than γ.

Proposition 3. For any permissible two-stage network game (G, δ,A; a),

γk(G, δ,A; a) <
√

2.

Proof. Because seeding is always valuable, x(G, γδ,B; a) ≥ b(G, γδ; a) for any B. Taking expecta-

tion yields Ek[x(G, γδ,B; a)] ≥ b(G, γδ; a), which implies that γk(G, δ,A; a) ≤ γ(G, δ,A; a).

Hence,
√

2 remains an upper bound for γk when the benchmark is k-random seeding.

5.4 Multi-stage sequences

We consider the general sequential launch problem with multiple stages of moves. To set up the

problem, we first define a multi-stage sequence and its refinement.

A sequence S = (P1, P2, · · · , Pk) is a partition of N such that Pi ∩ Pj = ∅, ∀i 6= j and

∪1≤i≤kPi = N , where |S| = k corresponds to the number of steps of this sequence. A chain

is a sequence with N step; i.e., players determine their contributions one by one. In addition,

a sequence S ′ is a refinement of S = (P1, P2, · · · , Pk) if there exists r = 1, . . . , k such that

S ′ = (P1, · · · , Pr−1, Q1, Q2, Pr+1, · · ·Pk) where Q1 ∪Q2 = Pr and Q1 ∩Q2 = ∅.
Given G, δ,S, we can define an extensive-form game with complete information in which N

players move according to the sequence specified in S. The timing is as follows. Players in P1

move simultaneously in the first period, and then players in P2 move simultaneously in the second

28With random seeding benchmark, the permissible range of δ need to be adjusted accordingly.
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period, · · · , and players in Pk move simultaneously in the k-th period. The actions, once taken,

are observable to all remaining players who move later. Let x(G, δ,S; a) be the SPNE effort profile

in the multi-stage game and let x(G, δ,S; a) = 1′x(G, δ,S; a) be the aggregate equilibrium effort.

Analogously, we can define the effectiveness index for the sequential targeting policy S.

Definition 6. For network G, synergy δ, marginal utility vector a, and sequence S, let γ(G, δ,S; a)

be unique positive scalar such that

x(G, δ,S; a) = b(G, γδ; a).

This γ index is called the relative network synergy equivalent (RNSE) for sequence S.

The regular RNSE obtains when the sequence has only one set of agents moving first and the

remaining moving second, i.e., k = 2. For fixed G, δ, the designer’s objective is maxS x(G, δ,S; a),

which is equivalent to maxS γ(G, δ,S; a).

Proposition 4. Fix any G and δ ∈
[
0, 1√

2λmax(G)

)
.

1. If S ′′ is a refinement of S ′, then γ(G, δ,S ′′; a) > γ(G, δ,S ′; a).

2. For any sequence S, γ(G, δ,S; a) <
√

2.

Proposition 7 in Zhou and Chen (2015) shows that equilibrium effort increases with a refinement

of the sequence S. Part (i) of Proposition 4 is a direct corollary of their observation and the

definition of index γ. More importantly, part (ii) says that allowing for more than two rounds of

sequential launches cannot improve the upper bound of γ further than the uniform bound of
√

2

shown by Theorem 1. The proof is analogous to that of Theorem 1, using an induction argument

on the depth of the sequence S.

In other words, further refinement of the sequence of targeting has limited value. This ob-

servation does not reject the usefulness of refinement. In fact, Zhou and Chen (2015) show that

refinement is always strictly beneficial to the designer, as suggested by part (i) of Proposition 4.

As a result, having a chain is always optimal (as long as having more stages is without cost).

Nevertheless, Proposition 4 (ii) says that the value of having a chain is still bounded by
√

2.

Combing these observations, we have a more complete understanding about the benefit of

sequentiality in network games.

Corollary 1. Suppose δ ∈
[
0, 1√

2λmax(G)

)
. Some SPNE exists and it is unique for any sequence

S. The value of sequentiality is limited as the γ is less than
√

2. Moreover, the SPNE outcome is

lower than the first best.

A concern similar to Section 4.5 is that the designer may not have precise control over the exact

sequence of moves. Some nodes may have the opportunity to delay or revise their actions later.

Similarly, we can extend the multi-stage game and our index γ to allow for revisions.
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A generalized sequence S̃ = (P̃1, P̃2, · · · , P̃k) is a sequence of subsets of N such that ∪1≤i≤kP̃i =

N . Here P̃i and P̃j may not be disjoint. Similarly, we can define a k-stage extensive-form game with

complete information, in which players move according to the sequence in S̃. Similar to Section

4.5, we assume only the final action chosen by each node is payoff relevant; i.e., for all i, ui(·) is a

function of x := (x1,τ(1), . . . , xn,τ(n)), where τ(i) is the last stage i can move and xi,τ(i) is the last

action taken by player i in S̃. The sequential game (G, δ, S̃; a) is described in detail in Appendix

A.10. Let s̃ be a SPNE of this game, and let x̃(G, δ, S̃; a) be the payoff relevant SPNE outcome. For

each S̃, define a partitional sequence S = (P1, P2, · · · , Pk) that assigns every node i to the last stage

he is asked to move; i.e., Pt := (∪s≥tP̃s)\(∪s≥t+1P̃s) for all t = 1, . . . , k (with P̃k+1 = ∅). Lemma 6

in Appendix A.10 shows that every k-stage network game with generalized sequence (G, δ, S̃; a) is

outcome equivalent to a k-stage game with a corresponding partitional sequence (G, δ,S; a).

We can define the index γ̃ for sequential game with overlapping sequence S̃ in the same fashion

as Definition 1:

x̃(G, δ, S̃; a) = b(G, γ̃δ; a).

Proposition 5. For any permissible k-stage network game (G, δ, S̃; a),

γ̃(G, δ, S̃; a) = γ(G, δ,S; a).

Proof. It follows directly from Lemma 6 and definition of γ̃.

Proposition 5 suggests that value of targeting by S̃, as measured by the RNSE index γ̃, can

always be achieved in a game where the designer chooses a partitional sequence S. As a result,

focusing on the main case where the designer lets everyone move exactly once is without loss of

generality.

6 Conclusion

It is widely accepted that sequential launch of network goods with targeted users improves aggregate

action in the contexts of charity donation, public good provision, teamwork production, technology

adoption. In this paper, we show that for any network structure, the equilibrium consumption with

any selection of targets/seeds is dominated by the outcome in which the peer effect parameter is

multiplied by
√

2 ≈ 1.414. In other words, about 41.4% increase in the magnitude of the peer effect

is the upper bound on the value of any targeting policy. We also demonstrate the tightness of this

bound
√

2. Therefore, even though it is valuable to use targeting based on network information,

the value of such network-based targeting may be rather limited. We further identify scenarios in

which the benefit from the optimal targeting is negligible. This analysis allows policy makers to

evaluate the cost of investing in network technology versus the cost of network information.
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We extend our results along various dimensions: the pricing of a monopolist selling social prod-

ucts, cost of intervening, randomly seeding a fixed number of players as an alternative benchmark,

and the general sequential problem with multiple stages of moves. We show that
√

2 remains the

(uniform) upper bound for all the above extensions. As another robustness check, we consider the

extension when the designer lets some seed players to revise their actions at the later stage. We

find that if a targeted node can choose between having the flexibility to revise or giving up this

option, the targeted node will surrender the option. We also consider a variant in which targeted

players can only increment their chosen actions in the later stage; in this case, all targeted players

will choose not to increment in the later stage. In both scenarios, being targeted and moving

in the early stage complies with the players’ self-interest, and the planner’s arrangement will be

voluntarily executed.

Our measure of RNSE has two appealing features. First, the measure is invariant to any affine

transformation on the payoffs of players. This property is desirable because in most expected utility

models payoff functions are typically only identified up to positive affine transformations. Hence

robust economic predictions shall not be altered when we scale these payoffs. This invariance no

longer holds if we consider alternative measures such as absolute change in the aggregate action or

payoff. Second, it enables us to draw meaningful comparison across different targeting strategies,

and across different network structures.

Our efforts hopefully invite further investigations of such an exciting area. Within the same

framework, it might be sensible to identify sharp upper and lower bounds for specific network G

and specific sequence S.29 Extensions to weighted networks appear straightforward, but may be of

independent interest. Beyond our setting, the idea of quantifying the value of network information

and network tactics can be applied to studying other types of targeting and network models with

alternative functional forms and/or action space (discrete binary choice vs continuous choice). How

to extend our analysis to those settings? Is there any constant performance bound for the value of

optimal targeting? These remain a research priority.

29See Section B.2 in Supplementary Materials for some examples.
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A Appendix: Proofs and more results

A.1 Proof of Theorem 1

The inverse Leontief matrix [I − δD]−1 associated with any matrix D can be expressed by the

following summation

[I− δD]−1 = I + δD + δ2D2 + · · · , (15)

where the infinite sum on the right hand side converges provided the spectral radius of δD is less

than 1, in particular it holds for a sufficiently small δ > 0. Using (15), we can show two intuitive

properties of the inverse Leontief matrix. (1) If D % (�)0, then [I − δD]−1 % (�)I � 0; (2) If

D′ % (�)D, then [I− δD′]−1 % (�)[I− δD]−1. We will use them in the proof.

Fix any network G. Consider any two-stage game with players in A ⊆ N move first followed

by players in B = N\A. We express G =

(
GAA GAB

GBA GBB

)
and denote U(δ) = [I− δGBB]−1.

By Proposition 1 in Zhou and Chen (2015), the SPNE action vector in the two-stage game can

be expressed as (omitting dependence on G in notation)

xS(δ) = Z(δ)a,

where Z(δ) :=

(
Z(δ)AA Z(δ)AB

Z(δ)BA Z(δ)BB

)
is given by

( [
I− δ(T(δ) + T(δ)D)

]−1
δ
[
I− δ(T(δ) + T(δ)D)

]−1
GABU(δ)

δU(δ)GBA

[
I− δ(T(δ) + T(δ)D)

]−1
U(δ) + δ2U(δ)GBA

[
I− δ(T(δ) + T(δ)D)

]−1
GABU(δ)

)
, (16)

with T(δ) = GAA + δGAB U(δ) GBA.

Recall the simultaneous-move game has equilibrium effort

x(δ) = [I− δG]−1a := M(δ)a := b(δ).

We prove a stronger statement than Theorem 1: for all permissible triple (G, δ,A),

(?) Z(δ) ≺M(
√

2δ). (17)

To see this, recall that in the proof of Proposition 1 in Zhou and Chen (2015), the inverse

Leontief matrix M(
√

2δ) can be expressed as

(
M(
√

2δ)AA M(
√

2δ)AB

M(
√

2δ)BA M(
√

2δ)BB

)
, which equals

( [
I−
√

2δ(T(
√

2δ) + 0)
]−1 √

2δ
[
I−
√

2δ(T(
√

2δ) + 0)
]−1

GABU(
√

2δ)
√

2δU(
√

2δ)GBA

[
I−
√

2δ(T(
√

2δ) + 0)
]−1

U(
√

2δ) + 2δ2U(
√

2δ)GBA

[
I−
√

2δ(T(
√

2δ) + 0)
]−1

GABU(
√

2δ)

)
.(18)

To show equation (17), we need to show the matrix expressed by (18) dominates the matrix
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expressed by (16) entry by entry. To do so, we compare the two matrices block by block using the

following observations:

• GAB % 0, GBA % 0.

• For sufficiently small δ > 0, U(δ) = [I−δGBB]−1 % I � 0, and U(
√

2δ) � U(δ). They follow

from GBB % 0 and the two properties of the inverse Leontief matrix mentioned above.

• T(δ) = GAA + δGAB U(δ) GBA % 0. Similarly, T(
√

2δ) % 0. By the same argument, the

inverse Leontief matrices [I−δ(T(δ)+T(δ)D)]−1 � 0 and [I−
√

2δT(
√

2δ)]−1 � 0 for δ small

enough.

Given these observations, to show equation (17), it suffices to show

[I−
√

2δT(
√

2δ) + 0]−1 � [I− δ(T(δ) + T(δ)D)]−1. (19)

So equation (19) is equivalent to

[I− δ(T(δ) + T(δ)D)]−1 · [
√

2δT(
√

2δ)− δ(T(δ) + T(δ)D)] · [I−
√

2δT(
√

2δ)]−1 � 0.

Here we use the property A−1 −B−1 = A−1(B−A)B−1 for any matrices A, B.

Hence, to prove equation (19), it suffices to show

(∗∗)
√

2T(
√

2δ) � T(δ) + TD(δ). (20)

Substituting the expression of T(·) into equation (20), we need to show

√
2GAA + 2δGAB[I−

√
2δGBB]−1GBA (21)

% GAA + GD
AA + δGAB[I− δGBB]−1GBA + δ[GAB[I− δGBB]−1GBA]D.

Observe that:

• GAA % 0 and GD
AA = 0 as the matrix GAA has zero diagonal entries;

• For sufficiently small δ, [I−
√

2δGBB]−1 % [I−δGBB]−1 % I. The claim follows from properties

of the inverse Leontief matrix and δ > 0, GBB % 0;

• Since GAB,GBA, [I−δGBB]−1 % 0, we have GAB[I−δGBB]−1GBA % (GAB[I−δGBB]−1GBA)D %

0.

The three observations imply that equation (21) indeed holds.
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A.2 Proof of Theorem 2

Consider the dyad example in Section 3.1. We have already shown that the index γ in (9) can be

arbitrarily close to the upper bound
√

2 when δ approaches 1/
√

2 (see Figure 1).

A.3 Proof of Lemma 3

The difference of the aggregate actions between the sequential-move game and the simultaneous-

move one with targeting A, when ai = 1 for all i, equals

x(G, δ;A)− b(G, δ) = δ2
∑
i∈A

∑
j∈N\A

gij +O(δ3)

by Zhou and Chen (2015). In addition,

b(G, δ) = 1′(I +

∞∑
k=1

δkGk)1 = n+ δ1′G1 + δ21′G21 +O(δ3).

From the definition of γ(G, δ;A), we obtain that

n+ δ1′G1 + δ21′G21 +O(δ3) +
∑
i∈A

∑
j∈N\A

gijδ
2 = n+ (γδ)1′G1 + (γδ)21′G21 +O(δ3),

which leads to

γ(G, δ;A) = 1 +

(∑
i∈A

∑
j∈N\A gij

1′G1

)
δ +O(δ2) = 1 +

(
CUT(A)

1′G1

)
δ +O(δ2).

Clearly, γ(G, δ;A) increases with δ when δ is relatively small.

A.4 Calculations for Example 3

Suppose n = 3 and A = {1}. We compute γ as a function of δ for complete, star, and extended

Dyad networks, respectively.

Complete network. We use n = 3 and m = 1 and obtain

γc(δ) := γ(δ, 3, 1) =
3 + δ − 6δ2

3− 7δ2
,

where the range of permissible δ is
[
0, 2

1+
√
17

)
= [0, 0.1952).30

30In fact, A = {1} is also the optimal target group in the complete network. To see this, note that

γ(δ, 3, 2) =
3 + 4δ

3 + 3δ − δ2 .

By tedious calculations, one can show γ(δ, 3, 1)− γ(δ, 3, 2) > 0. Thus, having one leader is optimal.
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Star network. For a star network with 3 players and player 1 is the central node. By Zhou

and Chen (2015), it is optimal to have the central player move first (A = {1}).
In the simultaneous-move game with scaled synergy γδ, the players’ best responses are

x1 = 1 + 2γδx2, x2 = x3 = 1 + γδx1.

The NE action profile is

b1(γδ) =
1 + 2γδ

1− 2(γδ)2
, b2(γδ) = b3(γδ) = 1 + γδx1 =

1 + γδ

1− 2(γδ)2
.

In the sequential-move game with synergy δ where player 1 moves first and players 2 and 3

follow. Player 1’s payoff is

x1 −
1

2
x21 + 2δx1(1 + δx1).

The first-order condition is

1− x1 + 2δ + 4δ2x1 = 0.

It implies the SPNE action profile is

xS1 =
1 + 2δ

1− 4δ2
,

xS2 = xS3 = 1 + δxS1 = 1 + δ

(
1 + 2δ

1− 4δ2

)
=

1− 2δ2 + δ

1− 4δ2
.

By definition, γ is the scaler given by

(1 + 2δ)2

1− 4δ2
= xS(δ) = b(γδ) =

(1 + 2γδ)2

1− 2γ2δ2
,

which simplifies to

γ2δ(3− 2δ) + γ2(1− 2δ)− 2 = 0.

The positive root is

γ∗(δ) =
−(1− 2δ) +

√
(1− 2δ)2 + 2δ(3− 2δ)

δ(3− 2δ)
.

Extended Dyad network. In this case, we have n = 3, g12 = g21 = 1 and gij = 0 for all

(i, j) 6= (1, 2), (2, 1). Note that player 3 is not connected to anyone. In both simultaneous-move

and sequential-move games, player 3’s optimal action is always x3(δ) = b3(γδ) = 1 for all synergy

parameter δ and scaler γ. Players 1 and 2 are interconnected and only interact with each other.

So the strategic interaction between players 1 and 2 is the same as that in the two-person Dyad

network analyzed before. And by definition, γ is given by equation (9)

γD(δ) =
2 + 3δ

2 + 2δ − δ2
,
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for all permissible δ ∈
[
0, 1√

2

)
.

A.5 Proof of Lemma 4

The game (G, δ,A,B; a) with overlapping target has some SPNE s̃ by permissibility and backward

induction.

At stage 2, the subgame at history h2 = (xi,1)i∈A is a simultaneous-move game among players

B with payoffs

ui(xB,2; xA\B,1) =

ai + δ
∑
j∈A\B

gijxj,1

xi,2 −
1

2
(xi,2)

2 + δ
∑
j∈B

gijxi,2xj,2 (22)

for all i ∈ B. Note that players in B knows that only action profile xA\B = (xj,1)j∈A\B are committed

and credible; while players in A∩ B can still revise their actions in stage 2. By permissibility, this

subgame has a unique NE. Every player i ∈ B has a unique best response function xi(xA\B).

At stage 1, player i ∈ A\B anticipates best responses (xj(xA\B,1))j∈B and chooses xi,1 to

maximize

ui(xA\B,1) = aixi,1 −
1

2
(xi,1)

2 + δ
∑
j∈A\B

gijxi,1xj,1 + δ
∑
j∈B

gijxi,1xj(xA\B,1). (23)

Let xi(xA\B,−i,1) be player i’s best response function to other players’ action in A\B. Denote by

(x̃j,1)j∈A\B the unique fixed point of these best response functions.

Every player i in A∩B is indifferent among his first-stage action xi,1, knowing that it is payoff

irrelevant and it will not affect the NE of the stage-2 subgames.

In the extended game, the payoff relevant equilibrium outcome is x̃ = ((x̃j,1)j∈A\B, (xj(x̃A\B,1))j∈B)

are characterized as above. Observe that the conditions are the same as the equilibrium charac-

terization of the standard game (G, δ,A\B; a) studied in Zhou and Chen (2015), where the leaders

are A\B and the followers are B. The result follows.

A.6 Lemma 5 and its proof

To understand the incentives of seed players, we need to compare their equilibrium payoffs, which

are conveniently summarized in the following Lemma.

Lemma 5. The following statements regarding equilibrium payoffs hold:

(i) In the simultaneous move game without seeding, each agent k’s equilibrium payoff is

π∗k(b(G, δ; a)) =
1

2
(bk(G, δ,a))2,
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where bk(G, δ,a) is k’s equilibrium action in the state NE.

(ii) In the the two-stage game with seeding A, at the unique SPNE outcome x(G, δ,A; a), for each

j ∈ B = N\A, her equilibrium payoff is

π∗j (x(G, δ,A; a)) =
1

2
(xj(G, δ,A; a))2 >

1

2
(bj(G, δ,a))2;

while, for i ∈ A, her equilibrium payoff satisfies

π∗i (x(G, δ,A; a)) <
1

2
(xi(G, δ,A; a))2.

However, this payoff is strictly higher than what i obtains at the state NE, i.e.,

π∗i (x(G, δ,A; a)) >
1

2
(bi(G, δ,a))2.

Proof of Lemma 5. We will repetitively use the simple mathematical observation from the solution

of a quadratic optimization problem: f(z) = az−θz2 with θ > 0. The unique maximizer is obtained

at z∗ = a/(2θ) with maximum value maxz f(z) = az∗ − θ(z∗)2 = θ(z∗)2.

Applying this observation to the static NE outcome and the payoff specification in (1), we note

that the equilibrium payoff under NE outcome is precisely 1
2b

2
k as the equilibrium action of k is

precisely bk. This shows part (i) of Lemma 5.

Now we consider the two-stage game with seeding A. First, for any j ∈ B who moves in the

2nd stage, j’s equilibrium payoff is just (1/2)(x∗j )
2, where x∗j is her equilibrium action in the unique

SPNE of the two stage game. The reason is that j, after observing the actions of seed players, is

necessarily playing her best response against other players in B.

However, for any seed agent i ∈ A, her incentive is slightly different due to the forward-looking

feedback from agents in B. To see that, we first note that in the subgame after players A have

chosen their action profile xA, the unique outcome induced among players in B is given by

x∗B(xA) = [I− δGBB]−1(aB + δGBAxA), (24)

Given the feedback from B in the subgame among nodes in B, the nodes in A choose xi to

maximize:

ui = aixi −
1

2
x2i + δxi

∑
i′∈A

gii′xi′ +
∑
j∈B

gijxj(xA)

 , ∀i ∈ A, (25)

where each j’s conditional response x∗j (xA) is given by (24). From this reduced form of player i in

(25), i’s equilibrium payoff must equal

π∗i (x(G, δ,A; a)) = θi(xi(G, δ,A; a))2
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by the previous mathematical observation, where θi measures the curvature of i’s reduced payoff

(see (25)), and equals

θi =
1

2
− δ2(GAB[I− δGBB]−1GBA)ii.

Clearly θi < 1/2, implying that

π∗i (x(G, δ,A; a)) = θi(xi(G, δ,A; a))2 <
1

2
(xi(G, δ,A; a))2.

Nevertheless, we claim that i’s payoff is still higher than what she obtains at the state NE.

The proof follows from a simple revealed preference argument. Suppose i ∈ A, instead of choosing

xi(G, δ,A; a), deviates to her static NE action bi, while any i′ ∈ A still choose xi′(G, δ,A; a). To

simplify the notation, we define the vector x̂A as the action profile among agents in A under this

deviation. Obviously, i’s equilibrium payoff at the SPNE x(G, δ,A; a) is higher than i’s payoff after

the deviation to x̂A. Moreover, recall

xi′(G, δ,A; a) ≥ bi′(G, δ; a) (26)

by Lemma 2, so x̂A � bA. As x∗B(·) increases with xA by (24),

x∗B(x̂A) � x∗B(bA) = bB (27)

where the last step follows from the static NE.

Therefore, i’s payoff after this deviation, by (25), would be

aibi −
1

2
b2i + δbi

∑
j∈A

gii′xi′(G, δ,A; a) +
∑
j∈B

gijx
∗
j (x̂A)

 ≥ aibi − 1

2
b2i + δbi

∑
k

gikbk =
1

2
b2i .

Here in the first inequality we use (26) and (27), in the last step we use i’s equilibrium payoff at

static NE (see part (i) of Lemma 5).

A.7 Proof of Theorem 4

Given A,p, the demand profile in the sequential consumption game is given by

X(G, δ,A,p) = Z(δ)(a− p),

where Z is given by (4.3), and depends on A,G, δ. So, the optimal pricing solves

max
p
〈p− c,X(G, δ,A,p)〉 = max

p
〈p− c,Z(δ)(a− p)〉,
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and yields

p∗ =
a + c

2
,

and

Π∗(G, δ;A) =
1

4
(a− c)′Z(δ)(a− c).

When A = ∅, Z(δ) = M(δ) and thus Π∗(G, δ; ∅) = 1
4(a − c)′M(δ)(a − c). By Theorem 1, Z(δ) �

M(
√

2δ) for any A.

Given c = 0 and a = 1, it is easy to see that γf = γ.

Remark 5. Our proof shows that, without the conditions c = 0 and a = 1, we still have γf <
√

2.

A.8 Proof of Proposition 2

(i) From the definitions of γ and γρ, we have

b(G, γδ; a)− ρ(A) = b(G, γρδ; a). (28)

Since ρ(A) ≥ 0, we have

b(G, γρδ; a) ≤ b(G, γδ; a),

implying that γρ(G, δ,A; a) ≤ γ(G, δ,A; a). The latter is less than
√

2 by Theorem 1.

(ii) Consider the Dyad network G in Example 1 and take A = {1} and a1 = a2 = 1. From the

definition, γρ(G, δ,A; a) solves the following equation

2(1 + δ)− δ2

1− 2δ2
− ρ({1}) = 2

1 + γρδ

1− (γρ)2δ2
. (29)

The range of δ is [0, 1/
√

2). Though the exact expression of γρ can be solved using the

quadratic form, for our purpose, we only need to show that as δ approaches 1/
√

2, γρ ap-

proaches
√

2. To see that, we observe that the left-hand side of (29) approaches to infi-

nite as δ → 1/
√

2, therefore, there must be limδ→1/
√
2(1 − (γρ)

2δ2) = 0. Consequently,

limδ→1/
√
2 γρ =

√
2, which proves part (i).

A.9 Proof of Proposition 4

Part (i) follows from Proposition 7 of Zhou and Chen (2015) and definition of γ. For part (ii), we

prove it by induction on the depth k of the sequence S.

When k = 1, the game has only one stage. For any G, δ,a, γ = 1 <
√

2.

When k = 2, then we are back to the case of Theorem 1, which implies γ ≤
√

2 for any G, δ, A
and a.
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Suppose γ(G, δ,S ′; a) ≤
√

2 for any sequence S ′ with depth no greater than k − 1.

Now consider any sequence S = (P1, P2, . . . , Pk) with depth k.

Given G, S, δ, recall xS is the equilibrium effort in the sequential game. As shown in the proof

of Proposition 7 in Zhou and Chen (2015), there exists matrix Z(δ) such that xS(δ) = Z(δ)a. We

want to show γ(G, δ,S; a) ≤
√

2 holds for any sequence with depth k as well.

We first start with a characterization of matrix Z using induction. Let A = P1 and B = N\A =

∪ki=2Pi. Let S ′ = (P2, . . . , Pk). After players in A have moved, the equilibrium in the subgame

with sequence S ′ is given by

xB = ŨaB = Ũ(aB + δGBAxA), (30)

with a matrix Ũ. Such a matrix Ũ is called feedback matrix in Zhou and Chen (2015) as it

determines how responses are followers’ actions to the action of the nodes in A. Since the sequence

S ′ has depth k − 1, by induction hypothesis, Ũ ≤ [1−
√

2δGBB]−1.

Given the feedback matrix Ũ in the subgame among nodes in B, the nodes in A choose xi to

maximize:

ui = aixi −
1

2
x2i + δxi

∑
j∈A

gijxj +
∑
j∈B

gijxj(xA)

 , ∀i ∈ A, (31)

where each xj(xA) is given by (30). Solving the subgame among nodes A using the above payoffs

yields the equilibrium outcomes for nodes in A, and in B by (30). Explicitly, We obtain:31

Z(δ) =

 [
I− δ(T̃ + T̃D)

]−1
δ
[
I− δ(T̃ + T̃D)

]−1
GABU

δŨGBA

[
I− δ(T̃ + T̃D)

]−1
Ũ + δ2ŨGBA

[
I− δ(T̃ + T̃D)

]−1
GABU

 , (32)

where Ũ is the feedback matrix in the subgame (P2, . . . , Pk), and T̃ = GAA + δGABŨGBA.

For the one-stage game with
√

2δ, the equilibrium effort is b(
√

2δ) = [I −
√

2δG]−1a. Similar

to equation (18), the feedback matrix is

[I−
√

2δG]−1 =

( [
I−
√

2δ(T + 0)
]−1 √

2δ
[
I−
√

2δ(T + 0)
]−1

GABU
√

2δUGBA

[
I−
√

2δ(T + 0)
]−1

U + 2δ2UGBA [I− δ(T + 0)]−1 GABU

)
,

(33)

where T := T(
√

2δ) = GAA +
√

2δGAB U GBA, and U := U(
√

2δ) = [I−
√

2δGBB]−1.

We only need to show Z(δ) - [I−
√

2δG]−1, for which it suffices to show[
I− δ(T̃ + T̃D)

]−1
-
[
I−
√

2δ(T + 0)
]−1

,

31By the same analysis as the case with two stages in the proof of Proposition 1 in Zhou and Chen (2015), except
that the matrix Ũ is given by the induction step.
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which is implied by

I−
√

2δ(T + 0) - I− δ(T̃ + T̃D)⇔ T̃ + T̃D -
√

2T.

Substituting T̃ and Ũ implies

T̃ + T̃D = GAA + δGABŨGBA + GD
AA + δ(GABŨGBA)D

- GAA + 2δGAB[I−
√

2δGBB]−1GBA,

where the - step uses: (i) GD
AA = 0; (ii) the induction hypothesis Ũ - [I−

√
2δGBB]−1; (iii) the

matrices GAB,GBA are positive and Ũ is also positive for δ sufficiently small, so (GABŨGBA)D -

GABŨGBA.

Again substituting T and U implies

√
2T =

√
2GAA + 2δGAB[I−

√
2δGBB]−1GBA.

Since GAA % 0, the above implies
√

2T % T̃ + T̃D.

A.10 Multi-stage sequences with revisions

A generalized sequence S̃ = (P̃1, P̃2, · · · , P̃k) is a sequence of subsets of N such that ∪1≤i≤kP̃i = N ,

where |S̃| = k corresponds to the number of steps of this sequence.

Similar to Section 5.4, we can define an extensive-form game with complete information where

players move according to the sequence in S̃. That is, players in P̃t ⊆ N moves simultaneously to

choose (xi,t)i∈P̃t
in stage t = 1, . . . , k.

Let Ht =
∏
s≤t−1((Xi,s)i∈P̃s

) be the set of histories at the beginning of stage t = 1, . . . , k

with Xi,s = R+. A generic history is ht ∈ Ht. Player i’s strategy is si = (si,t)i∈P̃t,t=1,...,k, where

si,t : Ht 7→ R+ if i ∈ P̃t. Let s denote the profile of strategies.

For player i ∈ N , let τ(i) be the last stage i can move according to S̃. Define the vector

x := (x1,τ(1), . . . , xn,τ(n)) as the profile of action last taken by each player. Assume only this final

action profile x is payoff relevant for all players; i.e., for all i, ui(·) is a function of x. Denote by

(G, δ, S̃; a) the k-stage sequential game with overlapping target S̃. Let s̃ be a SPNE of this game,

and let x̃(G, δ, S̃; a) be the payoff relevant SPNE outcome.

For every generalized sequence S̃, let S = (P1, P2, · · · , Pk) be the reduction of S̃ such that

Pt := (∪s≥tP̃s)\(∪s≥t+1P̃s) for all t = 1, . . . , k (with P̃k+1 = ∅). Note that S is a partition; each

cell Pt ⊆ P̃t and it contains all the players whose last move is at stage t according to S̃; i.e.,

Pt = {i ∈ N : τ(i) = t}.
We say a generalized k-stage sequential game (G, δ,S; ·) is permissible if the game (G, δ,S; ·) is

permissible, with S being the reduction of S̃.
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Lemma 6. For all generalized sequence S̃ and its reduction S, if the game (G, δ, S̃; ·) is permissible,

then

x(G, δ,S; a) = x̃(G, δ, S̃; a). (34)

Proof. We prove by induction on the number of steps k in S̃. When k = 1, it is the simultaneous-

move game. We have S̃ = S and eqn (34) holds trivially. When k = 2, we have the two-stage game

and eqn (34) follows from Lemma 4. Suppose that

x(G, δ,S; a) = x̃(G, δ, S̃; a)

holds for all sequences S̃ and its reduction S with less than k steps.

For a general k-step sequence S̃ = (P̃1, P̃2, · · · , P̃k). Recall its partitional reduction S =

(P1, P2, · · · , Pk) is given by Pt = (∪s≥tP̃s)\(∪s≥t+1P̃s) for all t = 1, . . . , k. Note that Pt ⊆ P̃t

and Pt = {i ∈ N : τ(i) = t} denotes all nodes whose last move is at stage t.

Let A = P1 and B = ∪kt=2Pt. At stage 2, the subgame at any history h2 = xP̃1,1
is a general (k−

1)-step sequential game with sequence (P̃2, · · · , P̃k). Still (P2, · · · , Pk) is the partitional reduction

of (P̃2, · · · , P̃k) for players in B. Note that for all nodes in P̃1, only nodes in P1 = A have made

credible moves at stage 1. Hence, at history h2 = xP̃1,1
, only the vector xA,1 is payoff relevant for

the continuation subgame.

By induction hypothesis, we have xB(·) = x̃B(·) for the corresponding subgame. By the proof of

Proposition 7 in Zhou and Chen (2015), xB = Ua′B = U(aB + δGBAxA,1), where U is the response

matrix. Combining the two observations, we have x̃B = U(aB + δGBAx̃A,1).

Going backward to stage 1, for all nodes i ∈ P̃1, we have two cases:

(1) For i ∈ P̃1\A, the node i will have the opportunity to revise his action later at some stage

t > 1. Hence, it is common knowledge that xi,1 is not a credible move and it is payoff-irrelevant.

Hence player i is indifferent among all xi,1. By the induction step, the best response of players in

B, x̃B(xA,1) does not depend on xi,1.

(2) For i ∈ A whose last move in at stage 1, player i chooses xi,1 to maximize payoff

ui(xA,1) = aixi −
1

2
x2i + δxi

∑
j∈A

gijxj,1 +
∑
j∈B

gij x̃j(xA,1)


Note that x̃j(xA,1) = xj(xA,1) for all follower j ∈ B. Therefore, player i ∈ A’s stage-1 problem

in the game (G, δ, S̃; a) is identical to player i ∈ A’s problem in the game (G, δ,S; a). Hence,

the equilibrium actions of the leaders in A are equivalent to those in the reduced game; i.e.,

x̃A = xA. In sum, in the game with k-step overlapping sequence, x̃A = xA and the response

function x̃B(x̃A) = xB(xA). Thus we prove the claim in eqn (34).
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B Supplementary Materials

B.1 Heterogeneous marginal utilities

In proving Theorem 1 and Proposition 4, we show a stronger result: the matrix M(
√

2δ) dominates

matrix Z(δ) entry by entry. As a result, the upper bound
√

2 for the RNSE index γ works in all

network games with arbitrary marginal utilities profile a, which does not need to be homogenous

across agents. However, when a is heterogenous, the exact value of the index γ can be affected by

the relative intensity of marginal utilities across players. The example below illustrate that, in the

leading dyad network, when a1 6= a2, the γ index also depends on the relative ratio of a1/a2.

Example 1 (continued): Suppose a1 6= a2 and player 1 is selected as the first mover. In this case,

the corresponding γ solves the following equation:

a1 + δa2
1− 2δ2

+
δa1 + (1− δ2)a2

1− 2δ2
=

(a1 + a2)

(1− γδ)
,

where the LHS is the total effort with targeting, while RHS is the total effort without targeting but

an adjusted δ. Solving it yields

γ(a1, a2, δ) :=
a1(1 + 2δ) + a2(1 + δ)

a1(1 + δ) + a2(1 + δ − δ2)
.

Note that γ(a1, a2, δ) increases in δ and a1 but decreases in a2.32

γ(0+, a2, δ) =
1 + δ

1 + δ − δ2
≤ γ(a1, a2, δ) ≤ γ(+∞, a2, δ) =

1 + 2δ

1 + δ
.

0.1 0.2 0.3 0.4 0.5 0.6
delta

1.0

1.1

1.2

1.3

gamma

Figure 6: The γ(·) curves as functions of δ, for different parameter values of a1 and a2. Fix a2 at
1. In the figure, a1 equals 10 in the dashed red curve, 2 in the dashed blue curve, 1 in the black
curve, 1/2 in the blue curve, and 1/10 in the red curve. The horizontal line is γ =

√
2 ≈ 1.414.

32Suppose a1 ≥ a2, then γ(a1, a2, δ) ≥ γ(a2, a1, δ), i.e., targeting node 1 is better than targeting 2.
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In Figure 6, all curves are monotone and bounded above by
√

2 and below by 1, for all δ ∈
[0, 1/

√
2). So

√
2 remains an upper bound, which is not obtainable exactly, but it is approachable

when δ is sufficiently close to 1/
√

2.

B.2 γ in specific networks

In this appendix, we will investigate explicit formula of γ and its bounds in specific networks such

as complete graphs and bipartite graphs. Leveraging the network structure in G, we can provide

upper bound for γ that is still simple but tighter than the universal bound of
√

2 characterized

by Theorem 1. To simplify exposition, we will assume players have homogeneous marginal utility

from actions, i.e., for all i ∈ N , ai = 1.

B.2.1 Complete graphs

For a complete graph Kn with n nodes, the adjacency matrix G is given by gii = 0 for all i and

gij = 1 for all i 6= j. Its spectral radius (λmax(Kn)) is (n− 1). Zhou and Chen (2015) characterize

the equilibria following any targeting policy in complete graphs.

In the simultaneous-move game with synergy γδ, the aggregate action is

b(Kn, γδ) =
n

1− γδ(n− 1)
.

In the sequential-move game with synergy δ, by symmetry, the SPNE total action only depends

on the number of seeds m the designer chooses to target. Let any policy with m seeds be Am. In

SPNE, the aggregate action is

xS(Kn, δ,Am) =
n−m

1− (n−m− 1)δ
+

1 + δ

1− (n−m− 1)δ

(1 + δ)m

1− δ(n− 2)− δ2(2n−m− 1)

By definition, the index γ(δ,Kn;Am) is given by xS(Kn, δ;Am) = b(Kn, γδ). Equation (36)

provides an explicit formula of γ(·, ·, ·) as a function of m,n, δ, which follows by straightforward

calculations.

Lemma 7. For a complete network Kn, δ is permissible for all targeting policy Am if and only if

0 ≤ δ < δ̄1 :=
2

n− 2 +
√
n2 + 4n− 4

.

Proof. The condition for the simultaneous-move game (A0 = {∅}) to have stable NE is equivalent

to δ < 1
λmax(Kn)

= 1
n−1 . And the condition for the sequential-move game with m leaders to have

stable SPNE is equivalent to having a quadratic term, B(δ,m, n) := 1− δ(n− 2)− δ2(2n−m− 1)

to be non-negative for all m = 1, 2, . . . , n. When the quadratic function equals to 0, the smaller
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root is negative. The larger root, denoted δ̄m, is positive and

1

δ̄m
=

(n− 2) +
√

(n− 2)2 + 4(2n−m− 1)

2
≥ (n− 2 + n)/2 = n− 1.

Observe that δ̄m < 1
n−1 and it is increasing in m. Hence, the conditions for equilibrium stability is

equivalent to

0 ≤ δ < δ̄1 =
2

n− 2 +
√
n2 + 4n− 4

.

Lemma 8. In a complete graph Kn, the index γ(Kn, δ;Am) is increasing in δ for all permissible

δ ∈ (0, δ̄1).

Proof. As stated in the main text, in a complete graph with n nodes and 1 ≤ m ≤ n seeds, γ is

defined the scaler where the aggregate effort in the sequential game xS(Kn, δ;Am) is equal to that

in the scaled simultaneous-move game b(Kn, γδ), i.e., γ solves the equation

n−m
1− (n−m− 1)δ

+
1 + δ

1− (n−m− 1)δ

(1 + δ)m

1− δ(n− 2)− δ2(2n−m− 1)
=

n

1− γδ(n− 1)
, (35)

By straightforward but tedious calculations, γ can be expressed explicitly as a function of δ, m,

and n:

γ := γ(Kn, δ;Am) =
1

n− 1

n(n−m− 1)B +mδ(2n−m) +mn

(n−m)B + (1 + δ)2m
, (36)

where B := 1− δ(n− 2)− δ2(2n−m− 1).

Taking partial derivative of equation (36) implies

∂γ

∂δ
=

1

n− 1
· m(n−m)[n+ 2nδ + (m2 + n2 − 2mn+ n)δ2]

(−n+ (n−m− 2)nδ + (m2 − 3mn+ n(2n− 1))δ2)2
. (37)

The sign of equation (37) is determined by the sign of

n+ 2nδ + (m2 + n2 − 2mn+ n)δ2 = n+ 2nδ + ((n−m)2 + n)δ2.

Clearly, for all δ ∈ (0, δ̄1), all n and m = 1, . . . , n, the above term is positive.

Proposition 6. For a complete graph with n nodes, and for any targeting policy Am ⊆ N ,

γ(Kn, δ;Am) <
n− 2 +

√
n2 + 4n− 4

2(n− 1)
:= γ∗(n)

for all permissible δ ∈ (0, δ̄1). Moreover, γ converges to the upper bound γ∗(n) as δ → δ̄1.

47



Proof. For all n, m = 1, . . . , n, and permissible δ ∈ (0, δ̄1), by Lemma 8, γ(Kn, ·;Am) is increasing.

Therefore,

1 = γ(Kn, 0;Am) < γ(Kn, δ;Am) < γ(Kn, δ̄1;Am) =
1

(n− 1)δ̄1
=
n− 2 +

√
n2 + 4n− 4

2(n− 1)
.

Remark 6. When n = 2 and m = 1, the complete network is the Dyad network, and the upper

bound γ∗(n) =
√

2 (see Figure 1). In general, the bound γ∗(n) is decreasing in the network size n

and converges to 1 as n→ +∞. The convergence follows from limn→+∞
n−2+

√
n2+4n−4

2(n−1) = 1.

B.2.2 Bipartite graphs

For a complete bipartite graph Kp,q with N = P ∪ Q, where p = |P| and q = |Q| are the group

sizes of two disjoint sets P and Q, respectively. The adjacency matrix is G(p,q) =

[
0 Jp×q

Jq×p 0

]
,

where Jmn is an m by n matrix of ones. The spectral radius of a complete bipartite graph Kp,q

(or λmax(Kp,q)) is
√
pq. Without loss, let P be the smaller group; i.e., p ≤ q. This includes the

star network as a special case (p = 1) and q is the number of spokes. Zhou and Chen (2015)

characterize NE in the simultaneous-move game and the SPNE in sequential-move games with

target A for complete bipartite graphs, which enables us to compute the RNSE index γ(Kp,q, δ;A).

Moreover, Zhou and Chen (2015) show that (for small δ) in a complete bipartite graph Kp,q the

designer’s optimal target is A = P. Denote this target by Ap.

Proposition 7. For a complete bipartite graph Kp,q, suppose p ≤ q and designer adopts the optimal

targeting policy Ap = P. Then

γ(Kp,q, δ;Ap) <

√
(1 + p)

p
≤
√

2.

Moreover, Definition 2 holds if δ ∈
[
0, 1√

(p+1)q

)
.

Proof. In the bipartite graph, let x denote the effort by a player in group P and y denote the effort

by a player in group Q.

In the simultaneous-move game with the scaled synergy parameter γδ, the FOCs are x =

1 + γδqy, y = 1 + γδpx. The total effort is

TE(γδ) = px+ qy = px+ q + γδpqx = q + p(1 + γδq)x,

where

x =
1 + δq

1− γ2δ2pq
.
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In the sequential game with synergy δ, without loss of generality, suppose p ≤ q. Since ai = 1

for all i, by Zhou and Chen (2015) , it is optimal to have the (weakly) smaller group to move first.

So the optimal target is Ap = P. Then the first-order conditions that determines the SPNE are

0 = 1 + δq − xS + δ2xS(p− 1)q + δ2xSq and yS = 1 + δpxS .

The total effort is

TES(δ) = pxS + qyS = q + p(1 + δq)xS ,

where

xS =
1 + δq

1− δ2q(p+ 1)
.

By Definition 1, γ(Kp,q, δ;P) is the scalar γ that solves TE(γδ) = TES(δ), i.e.,

(1 + γδq)2

1− γ2δ2pq
=

(1 + δq)2

1− δ2q(p+ 1)
. (38)

Treating the LHS of (38) as a function of the unknown variable γ ≥ 1 and fixed parameters

p > 0, q > 0, and δ > 0, clearly this function is strictly increasing in γ. When γ takes value
√

(1+p)
p ,

the LHS of (38) becomes

(1 +
√

(1+p)
p δq)2

1− δ2q(p+ 1)
,

which is clearly greater than the RHS of (38). Hence, the γ that solves equation (38) must satisfy

γ <
√

(1+p)
p .

Finally, permissibility requires γδ < 1√
pq . Using the upper bound of γ, a (weak) sufficient

condition for permissibility is

0 ≤ δ < 1
√
pq

1√
(1+p)
p

=
1√

(p+ 1)q
.

Remark 7.

(i) If p = q = 1, then K1,1 is equal to the dyad network and the upper bound is
√

2 (see Figure

1). And the upper bound
√

(1+p)
p <

√
2 for larger networks where p ≥ 2. As p→∞,

√
(1+p)
p

converges to 1. It suggests that (two-stage) sequential targeting can only have a very small

effect in a bipartite network when both groups are large.

(ii) Suppose P and Q have the same size; i.e., p = q. Then γ has an explicit formula (by
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substituting q = p in equation (38)):

γ(Kp,p, δ;Ap) =
2δp+ δ + 2

2δp− δ2p+ 2
,

where permissible δ lies in

[
0, 1√

(p+1)p

)
.

For any p, γ(·) is strictly increasing in δ.33 Furthermore, γ(Kp,p, δ;Ap) ≈ 1 + δ
2 by Lemma

3. Therefore, for very small δ the value of γ barely vary with the network size p.

33By standard calculations,

∂γ

∂δ
=

(n− p)p(n+ 2δn+ δ2((n− p)2 + n))

(n− 1)(δ(1 + 2δ)n2 + δ2p2 − n(1 + δ(2 + p) + δ2(1 + 3p)))2
> 0.
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