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Abstract

We develop a trade model with correlation in productivity across countries.
The model spans the full class of generalized extreme value import demand
systems and implies that countries with relatively dissimilar technology gain
more from trade. In the context of a multi-sector trade model, we provide
a tractable and flexible estimation procedure for correlation based on com-
pressing highly disaggregate sectoral data into a few "latent factors" related to
technology classes. We estimate significant heterogeneity in correlation across
sectors and countries, which leads to quantitative predictions that are signifi-
cantly different from estimates of models assuming independent productivity
across sectors or countries.
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1 Introduction

Two hundred years ago, Ricardo (1817) proposed the idea that cross-country dif-
ferences in production technologies can lead to gains from trade. Ricardo’s work
led to the following insight: Two countries gain more from trade when they have
dissimilar production possibilities.

The recent quantitative trade literature, building on Eaton and Kortum (2002, hence-
forth, EK), incorporates Ricardian motives for trade by treating productivity as a
random draw across goods, countries, and other observable economic units —
such as sectors. In these models, the joint distribution of productivity determines
the gains from trade. However, this literature relies on independence assumptions,
which, although leading to convenient functional forms for estimation, restrict em-
pirically relevant expenditure substitution patterns and impact inference on the
gains from trade.

In this paper, we develop a Ricardian model that allows for rich patterns of cor-
relation in productivity. By relaxing the independence assumptions used in the
literature, the model generates import demand systems spanning the entire gen-
eralized extreme value (GEV) class (McFadden, 1978, 1981). Our approach sheds
light on the properties and limitations of existing models, provides tools to build
new models, and enables the development of a flexible estimation procedure for
correlation.

Our quantitative application proposes a cross-nested constant-elasticity-of-substitution
(CES) structure for productivity where the novelty comes from treating each nest
as an unobserved — or, "latent" — dimension of the data. We apply this structure to
a multi-sector Ricardian trade model where these latent nests have an intuitive in-
terpretation as technology classes used to produce goods classified in different sec-
tors, allowing sectors to share technologies. Multi-sector models in the literature
typically preclude sectors from sharing technologies, instead pairing each latent
nest with an observed sectoral category. This independence assumption is particu-
larly problematic because observed sectoral classifications may not correspond to
technology classes, preventing the model from capturing cross-sector substitution
patterns, which may matter for counterfactual analysis.

Our estimation procedure uses disaggregate sectoral data to uncover the latent
nests of the correlation structure, and reveals significant sharing of technologies
across countries and sectors. This sharing manifests in considerable heterogene-
ity in correlation in productivity, which, in turn, changes the answers to standard
counterfactuals.

We start in Section 2 by presenting a Ricardian trade model with a general de-
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pendence structure for productivity, which preserves the max-stability property of
Fréchet distributions crucial for tractability in EK. However, while the indepen-
dence assumption in EK entails that bilateral trade flows follow a CES structure,
in Section 3, we show that our model implies expenditure shares that belong to
the GEV class. This class admits rich substitution patterns and includes — but it is
not restricted to — models in the EK tradition, such as models with many sectors
(Costinot et al., 2012; Costinot and Rodrìguez-Clare, 2014; Levchenko and Zhang,
2014; Caliendo and Parro, 2015; French, 2016; Lashkaripour and Lugovskyy, 2017),
multinational production (Ramondo and Rodríguez-Clare, 2013; Alviarez, 2019),
global value chains (Antràs and de Gortari, 2017), and domestic geography (Ra-
mondo et al., 2016; Redding, 2016), among others.

Despite its generality, our theory leads to intuitive and tractable counterfactual
analysis. We can calculate the gains from trade for the GEV class by adjusting the
CES case in Arkolakis et al. (2012) (henceforth, ACR) to account for correlation in
technology with the rest of the world: Countries with a similar degree of openness
to the rest of the world but more dissimilar technologies will enjoy higher gains
from trade. Although the sufficient-statistic approach for the gains from trade in
ACR only depends on one parameter (i.e. the shape parameter of the Fréchet dis-
tribution), this result hinges on the assumption of independent productivity. Once
we abandon this assumption, the sufficient statistic approach requires additional
parameters that capture correlation in productivity — and they will need to be
estimated.

Section 4 presents the quantitative application of our framework to a multi-sector
trade model. We use a cross-nested CES structure for productivity and treat each
nest as a latent factor.1 This latent factor model (LFM) allows for factors to be shared
across sectors, and includes the case of independent productivity across sectors as
the special case where each factor is unique to a single sector.

A key advantage of the LFM is that it relaxes the strong restrictions on expenditure
substitution patterns that exist in many sectoral models. In particular, we can de-
part from a gravity structure for expenditure at the sector level — a structure that
entails independence of irrelevant alternatives (IIA) within and across sectors.

A second important advantage of LFM is that, by decoupling latent factors from
sectors in the data, it avoids imposing that a sector, as defined by some arbitrary
choice of aggregation available in the data (e.g. 2 digits SITC), corresponds to
some fundamental aspect of the production process, such as a technology class.
Instead, it re-groups observed sectors into fewer latent factors. Basically, while we
treat latent factors as fundamental aspects of the production process, sectors are

1 The reference to factors is taken in analogy to the macro and finance literatures using principal-
component analysis.
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categories designed to apply policies, such as import tariffs.2

Because LFM encompasses sectoral gravity as a special case — the case where
factors are restricted to be specific to sectors — we can directly test the IIA re-
strictions implied by this assumption. We provide evidence suggesting that the
sectoral gravity model is misspecified and that the LFM specification is consistent
with correlation patterns observed in the expenditure data.

Our procedure to estimate latent factors is based on compressing the data from a
high to a lower dimension, similar to principal-component analysis. To perform
this compression, we use disaggregate sectoral expenditure and tariff data, and
adapt techniques from the literature on non-negative matrix factorization (Lee and
Seung, 1999, 2001; Fu et al., 2019) coupled with a pseudo Poisson maximum likeli-
hood criterion for estimation (Silva and Tenreyro, 2006; Fally, 2015).3

Our LFM estimates show that seven latent factors are enough to explain almost
95 percent of the variation in 4-digit SITC bilateral trade flows. These factors are
broadly shared across sectors, but they are also used intensively for the production
of certain goods. Factors related to the production of simple manufactured goods
are highly correlated across countries, while factors associated with the production
of complex manufactured goods, such as electronics, and with natural-resource
extraction present low correlation across countries.

The substitution expenditure elasticities generated by our LFM estimator differ
significantly from those implied by gravity estimates. The difference comes from
the zero cross-sector elasticities imposed by the gravity model. In particular, we
estimate cross-price elasticities that are much more heterogenous. These estimates,
in turn, shape the amount of correlation across countries and sectors predicted by
each model.

By estimating significant heterogeneity in correlation across sectors and countries,
we show in Section 5 that our quantitative model predicts that, among countries
equally open to the rest of the world, the ones with relatively dissimilar technology
to their partners gain more from trade. For instance, Canada, which is similar in
its degree of openness to Germany, has gains from trade that are almost 90 percent
higher. Our LFM estimates reveal that Canada is a top exporter of low-correlation
factors, while Germany specializes in factors with high correlation in productiv-

2 This manifests in the phenomenon known as tariff engineering. Firms make marginal ad-
justments to their product to change their tariff classification to one with a lower duty. In turn,
governments use reclassifications to pursue trade-policy goals (e.g. Costa Tavares, 2006). Tariff en-
gineering has led to many legal cases (e.g., The United States vs. Citroen, The United States vs.
Heartland By-products), starting with the case of U.S. import duties to sugar in 1881 (see Irwin,
2017), as well as a flurry of articles in the business press (e.g. ChicagoTribune, 2018).

3 Principal-component analysis cannot be applied in our case because, typically, it delivers neg-
ative estimates. Expenditure, however, is non-negative.
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ity across countries. The difference in gains between these two countries is only
four percent if we use estimates from models that assume independent productiv-
ity across sectors. In contrast, we find that, conditional on a country’s openness,
variation in estimated gains is much higher for LFM.

Related literature. Our paper naturally relates to the large trade literature using
the Ricardian-EK framework (see Eaton and Kortum, 2012, for a review). More
generally, our approach can be applied to any environment that requires Fréchet
tools, such as selection models used in the macro development literature (Lagakos
and Waugh, 2013; Hsieh et al., 2013; Bryan and Morten, 2018), or trade models
used in the urban literature (Ahlfeldt et al., 2015; Monte et al., 2015).

Our paper is closely related to Adao et al. (2017), who provide sufficient condi-
tions for non-parametric identification of invertible import demand systems using
aggregate trade data. Their approach departs from CES demand, but does not nec-
essarily lead to closed-form results. By focusing on the subclass of GEV import
demand systems, we operationalize a model of Ricardian comparative advantage
where IIA does not need to hold and leads to closed-form expressions. Our LFM
estimation procedure, based on latent factors and disaggregate data, presents a
flexible alternative to the Berry et al. (1995) procedure in Adao et al. (2017).4

Relatedly, papers such as Caron et al. (2014), Lashkari and Mestieri (2016), Brooks
and Pujolas (2017), Feenstra et al. (2017), and Bas et al. (2017), among others, es-
timate import demand systems with more flexible substitution patterns than CES.
They abandon homothetic demand systems, which we do not, but aim, as we do,
to incorporate disaggregate data to estimate elasticities. In contrast with this lit-
erature, we link expenditure substitution patterns to the degree of technological
similarity across countries and sectors. In this way, we can incorporate hetero-
geneity in elasticities without relying on demand-side factors.

Finally, the quantitative trade literature typically incorporates an amplification
mechanism for trade through input-output networks (e.g. Caliendo and Parro,
2015). While our model relaxes the independence assumptions of multi-sector
EK models, it does not incorporate an input-output structure. Even though cor-
relation in productivity is a distinct economic mechanism from input-output link-
ages, it could lead to similar quantitative predictions. A comparison between the
gains from trade implied by the LFM and estimates of the sectoral gravity model
augmented by those linkages reveals that LFM gains are not only higher but also
much more heterogenous, suggesting that the correlation structure of this model
captures economic forces that are distinct from input-output linkages.

4 The mixed CES specification used in Adao et al. (2017) belongs to the GEV class, and it is
obtained as the limiting case of the cross-nested CES specification we use when the number of
nests goes to infinity (see Appendix C.2).
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2 The Ricardian Model of Trade

Consider a global economy consisting of N countries. We use the subscript o for
origin countries and d for destination countries. Countries produce and trade a
continuum of goods v ∈ [0, 1]. Consumers have identical CES preferences over
goods with elasticity of substitution η > 1. Expenditure on v isXd(v) = (Pd(v)

Pd
)1−ηXd,

where Pd(v) is the price of good v, Pd = (
∫ 1

0
Pd(v)1−ηdv)

1
1−η is the price level, and

Xd is total expenditure in country d.

Each good v is produced with an only-labor constant returns to scale technology,

Yod(v) = Zod(v)Lod(v).

Productivity Zod(v) depends on both the origin country o where the good gets pro-
duced and the destination market d where it gets delivered. This variable captures
both the efficiency of production in the origin and inefficiencies associated with de-
livery to the destination. In this way, we do not impose the standard assumption
on iceberg trade costs (Samuelson, 1954), which would correspond to the special
case of Zod(v) = Zo(v)/τod.

As in EK, we model productivity as a random variable drawn from a max-stable
multivariate Fréchet distribution. The EK model, which is built on independent
Fréchet random variables, gets its tractability from the property of max-stability.
By applying the tools developed originally for random utility models (McFadden,
1978, 1981) to Ricardian models of trade, we are able to relax the independence as-
sumption in EK, and get a flexible, yet tractable, model of trade in the generalized
extreme value (GEV) class. Models in this class capture Ricardo’s insight that the
degree of technological similarity determines the gains from trade.

2.1 Max-Stable Multivariate Fréchet Productivity

We assume that the joint distribution of productivity across origin countries is
given by

P [Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ] = exp
[
−Gd(T1dz

−θ
1 , . . . , TNdz

−θ
N )
]
, (1)

where Tod is the scale parameter and θ the shape parameter characterizing the
marginal (Fréchet) distributions, P[Zod(v) ≤ z] = e−Todz

−θ . The scale parameters
capture the absolute advantage of countries, while the shape parameter regulates
the heterogeneity of independent and identically distributed productivity draws
across the continuum of goods, as in all models based on EK.
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The function Gd is a correlation function, also called tail dependence function in
probability and statistics. This function allows for a flexible dependence structure
across origin countries o serving destination d.5 This function is homogeneous of
degree one, ensuring the property of max-stability. Max-stability implies that the
distribution of the maximum is Fréchet with shape θ, and that the conditional and
unconditional distributions of the maximum are identical. As for EK, this result is
crucial for tractability because it implies that expenditure shares equal the proba-
bility of a destination importing from a given origin country. Additionally, a cor-
relation function presents the regularity properties of the social surplus function
in GEV discrete choice models (McFadden, 1981; Train, 2009): unboundedness;
and a sign pattern for cross-partial derivatives (reflected in expenditure satisfy-
ing the gross-substitute property).6 Finally, we impose a normalization restriction,
G(0, . . . , 0, 1, 0, . . . , 0) = 1, so that the scales, which parameterize the marginal dis-
tributions, are separated from the correlation function, which determines the joint
distribution of productivity.7

To fix ideas, assume that productivity is independent across countries, as in EK:

P[Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ] =
∏

o=1,...,N

P[Zod(v) ≤ zo] = exp

(
−

N∑
o=1

Todz
−θ
o

)
.

(2)
This case corresponds to (1) with an additive correlation function,

Gd(x1, . . . , xN) =
N∑
o=1

xo. (3)

Because of the additive structure of Gd, in this special case, the shape parameter
θ plays two distinct roles. First, since it controls dispersion in productivity across
the continuum of goods, it determines the distribution of relative productivity be-
tween any two goods within a country, Zod(v)/Zod(v

′). Second, because of inde-
pendence, it also controls the joint distribution of relative productivity between
any two countries, and therefore the strength of comparative advantage — deter-
mined by Zod(v)/Zod(v′)

Zo′d(v)/Zo′d(v′)
. Consequently, this case leads to the result in ACR that θ

alone governs the gains from trade in the EK model.

5A function G : RN+ → R+ is a correlation function if C(u1, . . . , uN ) ≡ exp[−G(− lnu1, . . . , uN )]

is a max-stable copula — that is, C(u1, . . . , uN ) = C(u
1/m
1 , . . . , u

1/m
N )m for any m > 0 and all

(u1, . . . , uN ) ∈ [0, 1]N . For details see Online Appendix O.1 and Gudendorf and Segers (2010).
6 Formally: Gd(x1, . . . , xN ) → ∞ as xo → ∞ for any o = 1, . . . , N ; and the mixed partial

derivatives of Gd exist and are continuous up to order N , with the o’th partial derivative with
respect to o distinct arguments non-negative if o is odd and non-positive if o is even.

7See Online Appendix O.1 for details on properties of Fréchet random variables and the repre-
sentation of their joint distribution with correlation functions.
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However, once we abandon the assumption of independent productivity, the strength
of comparative advantage no longer solely depends on θ. Generally, it is the cor-
relation function that controls comparative advantage since it determines the joint
distribution of productivity between any two countries. Except for the knife-edge
case of independence, both θ and the parameters defining Gd will matter for the
gains from trade.

To illustrate this point, consider the case of a symmetric max-stable Fréchet distri-
bution,

P[Z1d(v) ≤ z1, . . . , ZNd(v) ≤ zN ] = exp

−( N∑
o=1

(Todz
−θ
o )

1
1−ρ

)1−ρ
 , (4)

where the correlation function is CES,

Gd(x1, . . . , xN) =

[ ∑
o=1,...,N

x
1

1−ρ
o

]1−ρ

. (5)

The parameter ρ ∈ [0, 1) regulates correlation in productivity draws across origins
o, and therefore similarity in relative productivity. When ρ = 0, we are back to
the independence case. As ρ → 1, relative productivity between any two goods
becomes identical across countries. In this case, no country has a comparative
advantage in any good, and, as we will see, there are no gains from trade. Despite
the existence of heterogeneity in productivity across goods, regulated by θ, it is
now ρ that determines the strength of comparative advantage across countries.

Next, we focus on cross-nested CES correlation functions. This functional form
constitutes the foundation of our procedure to estimate correlation patterns across
countries.

2.2 The case of cross-nested CES

We now present a flexible structure for correlation based on a cross-nested CES
(CNCES) function. This case is relevant for several reasons. First, it approximates
any correlation function. Second, it is the building block of many EK-type Ricar-
dian models of trade, such as sectoral models. And third, it allows us to relax
commonly-made distributional assumptions through the introduction of "latent"
nests.

Assume that productivity is distributed max-stable multivariate Fréchet, with scale
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Tod, shape θ, and the following correlation function:

Gd(x1, . . . , xN) =
K∑
k=1

[
N∑
o=1

(ωkodxo)
1

1−ρk

]1−ρk

, (6)

where ρk ∈ [0, 1), for each k, ωkod > 0, and
∑

k ωkod = 1. The weight ωkod indicates
the relative importance of each nest k for a given trading pair od. If ωkod is high, nest
k is particularly productive in country o for delivery to d. Within nest k, correlation
in productivity across origins is measured by the correlation coefficient ρk. For
ρk = 0, productivity is independent and the k’th nest is additive. In contrast, as
ρk → 1, productivity becomes perfectly correlated within nest k, and the k’th nest
converges to a max function.

The specification in (6) is particularly useful as it can capture any max-stable struc-
ture.

Proposition 1 (Cross-Nested CES Approximation). Any correlation function can be
approximated uniformly on compact sets using a CNCES correlation function.

Proof. See Appendix A.1.

This result ensures that focusing on CNCES — as we do in our quantitative appli-
cation in Section 4 — is without loss of generality.

The CNCES functional form also provides a bridge between our general frame-
work and existing quantitative trade models based on EK — which arise as special
cases after imposing additional restrictions on the nests.

As a first example, consider the case where each nest is specific to a single origin,
meaning that ωkod = 1{k = o} and K = N . The correlation function in (6) col-
lapses to (3), corresponding to independent productivity across countries. Indeed,
overlapping nests across countries are necessary for correlation in productivity.

Second, consider the case of only one nest, K = 1. This restriction means that (6)
collapses to the expression in (5) corresponding to symmetric correlation across
origins (i.e. same ρ). For ρ = 0, we get the productivity distribution in (2), as in
EK. But even for ρ > 0, correlation is innocuous because it has no impact on trade
patterns — i.e. it leads to a CES import demand system, as we make clear below.
We need more than one nest so that correlation is heterogenous across countries
and empirically relevant.

Third, we can connect our aggregate model to disaggregate sectoral models in the
literature by assuming that the nests in (6) correspond to sectors. In particular,
the additive structure of the nests in the CNCES specification means that we will
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have closed-form solutions not only for aggregate variables but also, as we show
in Section 3, nest-level variables. Concretely, letting s index sectors, we can replace
k by s in (6). Within each sector, productivity draws can be correlated (0 ≤ ρs < 1);
across sectors, correlation can be heterogeneous (ρs 6= ρs′), with higher sectoral
correlation due to more similar productivity draws across countries. However,
this structure implies that, since each nest is specific to a single sector, productivity
draws are independent across sectors and, within sector, correlation is homoge-
nous across origins. We would need overlapping nests across sectors in order to
relax these two assumptions.

An important feature of the nests in the correlation function in (6) is that they
do not have to correspond to a category observed in the data, such as a sector.
They can be treated as unobserved dimension of the data. In this case, we refer to
them as latent factors. In the context of a multi-sector Ricardian model of trade, we
propose to treat the k-nests as unobservable categories, and move away from the
assumption of independence across sectors and homogenous correlation within
sectors. When sectors share latent factors, within-factor correlation, captured by
ρk, induces both across-sector and across-origin correlation. The CNCES structure
with latent factors constitutes a tractable and intuitive way of departing from the
independence assumptions that are common in the literature.

Furthermore, in the context of Ricardian theory, these latent factors have a natural
interpretation as technology classes applied to the production — and delivery —
of goods, and may be shared across countries and sectors. Formally, suppose that
there exist K technology classes, k = 1, . . . , K, each corresponding to a set of re-
lated ideas for producing goods. The efficiency of k in country o to produce good v
for destination d is a random variable Z∗kod(v), drawn from a max-stable multivari-
ate Fréchet distribution with scale T ∗kod, shape θ, and correlation function as in (5)
with coefficient ρk.

Productivity is the result of applying the best set of ideas for production of a good
v in a location o for delivery to d: Zod(v) = maxk=1,...,K Z

∗
kod(v). Due to max-stability,

productivity, Zod(v), is distributed max-stable multivariate Fréchet with scale Tod =∑
k T
∗
kod, shape θ, and a CNCES correlation function as in (6) with weights given

by ωkod ≡ T ∗kod/
∑

k′ T
∗
k′od.

This simple example illustrates how the parameters of the correlation function can
be linked to primitives related to technology and the nests of a CNCES correlation
function can be interpreted as underlying technology classes.8

8 Lind and Ramondo (2021) develop a model of innovation and diffusion that gives rise to
correlation in productivity across countries as a result of the dynamics of knowledge worldwide.
Their model provides a micro-foundation for the entire class of max-stable multivariate Fréchet
distributions.
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3 Expenditure, Prices, and Welfare

Our theory generates import demand systems belonging to the generalized ex-
treme value (GEV) class. This is a large sub-class in the class of invertible demand
systems with the gross substitute property, allows for rich patterns of substitution
in expenditure, and leads to closed-form expenditure shares.

We first derive expenditure shares for the Ricardian model in Section 2. Next, we
present properties of the GEV class and focus on the sub-class of CNCES. Finally,
we characterize macro counterfactuals under GEV.

3.1 GEV Import Demand

Under perfect competition, the price of good v equals its marginal cost, and it is
provided to country d by the lowest-cost supplier,

Pd(v) = min
o=1,...,N

Wo

Zod(v)
, (7)

with Wo denoting the nominal wage in country o.

The following proposition derives expressions for expenditure shares and the price
index. These closed-form results are a direct consequence of max-stability.

Proposition 2 (Trade Shares and Price Levels). If productivity is distributed max-
stable multivariate Fréchet with shape θ > η− 1 and a continuously differentiable correla-
tion function, then country d’s expenditure share on goods from country o is

πod ≡
Xod

Xd

=
P−θod G

d
o

(
P−θ1d , . . . , P

−θ
Nd

)
Gd
(
P−θ1d , . . . , P

−θ
Nd

) , (8)

where Pod ≡ γT
−1/θ
od Wo, γ ≡ Γ

(
θ+1−η
θ

) 1
1−η , Γ(·) is the gamma function,Gd

o (x1, . . . , xN) ≡
∂Gd (x1, . . . , xN) /∂xo, and the price index in country d is given by

Pd = Gd
(
P−θ1d , . . . , P

−θ
Nd

)− 1
θ . (9)

Proof. See Appendix A.2.

First, the share of goods imported from o into d has the same form as choice prob-
abilities in GEV discrete choice models, with P−θod replacing choice-specific utility.9

9Notice that we can map the scale parameters Tod into a productivity index, Ao ≡ T
1/θ
oo , which

measures a country’s ability to produce goods in their domestic market, and an iceberg trade cost
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These GEV import demand systems are uniquely characterized by the shape pa-
rameter θ and the correlation function Gd. Second, as in EK, the share of expendi-
ture of country d on goods from o equals the probability that o is the lowest cost
producer, thanks to max-stability.10 Finally, the price level in each destination mar-
ket is determined by aggregating import prices using the correlation function. In
analogy to the discrete choice literature, welfare calculations depend crucially on
the specification of this function.

An important class of import demand systems within the GEV class is CES. An
additive correlation function generates CES expenditure,11

πod =
P−θod∑
o′ P

−θ
o′d

. (10)

This specification includes most of the workhorse models of trade, such as Arm-
ington, Melitz, and EK (Arkolakis et al., 2012). However, the GEV class is much
larger than the CES class, allowing for richer substitution patterns.

To clearly see this result, we compute the cross-price elasticity (o′ 6= o) of (8):

εoo′d ≡
∂ lnπod

∂ lnPo′d/Pd
= −θP

−θ
o′dG

d
oo′(P

−θ
1d , . . . , P

−θ
Nd)

Gd
o(P

−θ
1d , . . . , P

−θ
Nd)

≥ 0, (11)

whereGd
oo′(x1, . . . , xN) ≡ ∂Gd

o(x1, . . . , xN)/∂xo′ . Due to the sign-switching property
of the correlation function, these elasticities are non-negative, implying the gross
substitutes property. Further, max-stability implies that the elasticities sum up to
−θ, so that the own-price elasticity (o′ = o) is simply εood = −θ −

∑
o′ 6=o εoo′d < 0.12

When the correlation function is additive, the cross-price elasticity in (11) is zero.
That is, CES entails independence of irrelevant alternatives (IIA). When the cor-
relation function is not additive, the cross-price elasticity is not zero, generating
departures from IIA. Since linearity is associated with independence, more curva-
ture in Gd is associated with more correlation and stronger departures from IIA.

For the case of the CNCES correlation function in (6), expenditure shares are the re-
sult of adding nest-level expenditure shares, which, from a Ricardian perspective,

index, τod ≡ (Tdd/Tod)
1/θ, which measures efficiency losses associated with delivering goods to

market d. In this way, we get the familiar expression Pod = γτodWo/Ao.
10 Since the conditional and unconditional distributions of the maximum are identical,

πod = E
[
(Pd(v)/Pd)

1−η1{Wo/Zod(v) = Pd(v)}
]

= E
[
(Pd(v)/Pd)

1−η]P [Wo/Zod(v) = Pd(v)] =
P [Wo/Zod(v) = Pd(v)]. This result does not rely on CES preferences (see Online Appendix O.5).

11 The correlation function in (5) also leads to CES but with an elasticity equal to θ/(1− ρ).
12Max-stability requires that Gd is homogenous of degree 1. Consequently, Gdo(x1, . . . , xN )

is homogenous of degree zero and
∑N
o′=1 xo′G

d
oo′(x1, . . . , xN ) = 0. Since εood = −θ −

θ
P−θod G

d
oo(P

−θ
1d ,...,P

−θ
Nd)

Gdo(P
−θ
1d ,...,P

−θ
Nd)

, then
∑
o′ εoo′d = −θ.
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we interpret as expenditure on goods made with each latent technology:

πod =
K∑
k=1

π∗kod with π∗kod =
(ωkodP

−θ
od )

1
1−ρk

N∑
o′=1

(ωko′dP
−θ
o′d )

1
1−ρk︸ ︷︷ ︸

πW
kod

[
N∑
o′=1

(
ωko′dP

−θ
o′d

) 1
1−ρk

]1−ρk

K∑
k′=1

[
N∑
o′=1

(
ωk′o′dP

−θ
o′d

) 1
1−ρk′

]1−ρk′

︸ ︷︷ ︸
πB
kd

.

(12)
The variable π∗kod is the share of overall expenditure on goods made with latent
factor k that destination d sources from origin o. The variable πW

kod ≡ π∗kod/
∑

o′ π
∗
ko′d

is the within-factor share, and the variable πB
kod ≡

∑
o′ π
∗
ko′d/

∑
k′
∑

o′ π
∗
k′o′d is the

between-factor share. In this case, the cross-price expenditure elasticity (o 6= o′) is

εoo′d =
K∑
k=1

π∗kod
πod

∂ ln π∗kod
∂ lnPo′d/Pd

= θ
K∑
k=1

ρk
1− ρk

πWkodπ
W
ko′d

πBkd
πod

. (13)

When two origins have similar within-factor expenditure shares in a destination,
they are strong head-to-head competitors and this elasticity is high. Similarly,
when two countries have expenditure concentrated on factors with high correla-
tion across countries (high ρk), they are more substitutable. In contrast, elasticities
are low for competitors with dissimilar within-factor shares and/or in factors with
low correlation across countries (low ρk). When ρk = 0 for all k, we are back to the
CES case.

Virtually all models in the existing quantitative literature inspired by EK have a
CNCES demand system, as in (12). That is, they fit into the GEV class. The connec-
tion arises from interpreting nests as corresponding to observable categories such
as sectors, regions, multinational firms, or global value chains. For the case of sec-
tors, this means pairing each latent factor with a unique sector, which amounts to
assuming that sectors do not share technologies.13

These cases are examples of the following general equivalence result.

Corollary 1 (GEV Equivalence). For any trade model that generates a GEV import
demand system, there exists a Ricardian model with max-stable multivariate Fréchet pro-
ductivity that generates the same import demand system.

Corollary 1 provides an "umbrella" for a large class of models in the trade liter-
ature by pairing any model with expenditure in the GEV class to a max-stable

13 For instance, in the multinational production model in Ramondo and Rodríguez-Clare (2013),
where the home country of a technology may differ from the location where it is used for produc-
tion, each nest in (12) is paired with the home country of the technology. See Appendix C.1 for the
multi-sector model, and Online Appendix O.2 for the multinational production model, regional
model, and global-value chain model.
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multivariate Fréchet Ricardian model.14 Despite their distinct micro-foundations,
all the models in the GEV class can be tied to a common Ricardian interpretation
where aggregate productivity is max-stable multivariate Fréchet. Moreover, these
models share identical macro counterfactuals, as we explain next.

3.2 Macro Counterfactuals with GEV

We next show that heterogeneity in correlation leads to heterogeneity in the gains
from trade.15 Specializing (8) to self-trade, and using the expression for the price
index in (9), we can write the real wage in country d as

Wd

Pd
= γ−1T

1
θ
dd (π̃dd)

− 1
θ , (14)

where π̃dd ≡ πdd/G
d
d(P

−θ
1d , . . . , P

−θ
Nd) = (Pdd/Pd)

−θ reflects the real price of domesti-
cally produced goods which, in turn, summarizes correlation of d with the rest of
the world. Using (14) for fixed Tdd, the change in real wages between two equilibria
reflects the change in correlation-adjusted self-trade shares:

W ′
d/P

′
d

Wd/Pd
=

(
π̃
′

dd

π̃dd

)− 1
θ

. (15)

In autarky, country d purchases only its own goods, πdd = 1, and the price of
domestic output is equal to the domestic price level, Pdd = Pd. The expression in
(15) collapses to

Wd/Pd
WA
d /P

A
d

= (π̃dd)
− 1
θ . (16)

This expression generalizes the sufficient-statistic approach of ACR to the class of
models with GEV import demand systems. Crucially, the sufficient statistic is no
longer the self-trade share — it is now necessary to adjust self trade to account for
cross-country correlation. Under independence, the correlation function is addi-
tive, and the gains from trade in (16) simplify to the ones in ACR, π̃dd = πdd: two
countries with the same self-trade share have the same gains from trade. How-
ever, the expression in (16) admits the possibility that two countries with the same
self-trade share have different gains depending on how similar they are to other
countries. In particular, when productivity is more similar across countries, the
forces of comparative advantage weaken and trade produces lower gains.

14 By adapting results from the discrete choice literature (Dagsvik, 1995), we go a step further and
show that GEV import demand systems are dense in the space of import demand system generated
by Ricardian models with any productivity distributions (see Online Appendix O.3).

15 Online Appendix O.4 presents the model equilibrium formally and how to compute counter-
factuals using exact hat-algebra methods.
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We next focus on the CNCES case, which yields a closed-form expression for (16).
Using the expenditure shares in (12), the gains from trade relative to autarky are
(see Appendix B for derivations),

Wd/Pd
WA
d /P

A
d

= π
− 1
θ

dd

[
K∑
k=1

(πWkdd)
1−ρkπBkd
πdd

]− 1
θ

. (17)

The second term on the right-hand side captures how correlation affects the gains
from trade relative to the case of independent productivity. Conditional on factor-
level expenditure, more correlation within any nest k reduces the gains from trade,
and more so if self-trade expenditure for that factor is high. For ρk = 0 for all
k, the gains from trade reduce to the ACR formula, and θ is the only parameter
regulating the gains from trade. In contrast, for ρk → 1 for all k, there are no gains
from trade regardless of the value of θ. Intuitively, if all countries have identical
production possibilities, there are no gains for trade — dispersion in productivity
across goods within a country is no longer relevant. For intermediate values of ρk,
both dispersion in productivity across goods, controlled by θ, and correlation in
productivity across countries, controlled by ρk, matter. Either higher θ or higher ρk
reduce the strength of comparative advantage and decrease the gains from trade.
Summing up, the shape θ, factor-level correlation parameters ρk, and factor-level
expenditure shares combine to determine the gains from trade.

Next, for further intuition, we provide a three-country example.

A three-country example. Consider a world with three countries with identical
size. Assume that productivity is max-stable Fréchet with common scale and cor-

relation function of Gd(x1, x2, x3) =
(
x

1/(1−ρ)
1 + x

1/(1−ρ)
2

)1−ρ
+ x3. Countries 1 and 2

are technological peers, with the parameter ρ measuring the degree of correlation
in their technology. Country 3’s productivity is uncorrelated with productivity in
countries 1 and 2. The gains from trade are:

Wd/Pd
WA
d /P

A
d

=
[
π1−ρ
dd (π1d + π2d)

ρ]− 1
θ for d = 1, 2 and

W3/P3

WA
3 /P

A
3

= π
− 1
θ

33 .

The gains from trade for country 3 simply reflect their self-trade share. But the
gains from trade for countries 1 and 2 depend on the degree of correlation in tech-
nology between them. Conditional on expenditure, when ρ = 0, we get the ACR
formula; for ρ > 0, correlation lowers the gains from trade; for ρ → 1, the two
countries are effectively a single country and the gains from trade depend on their
combined self trade.

If we do not condition on expenditures, but rather solve for their equilibrium val-
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ues, the intuition carries over. In an otherwise identical world, although wages
equalize between countries one and two, heterogeneity in correlation precludes
wage equalization with country 3. Specifically, countries 1 and 2 have lower gains
from trade because they have correlated productivity.16

4 Quantitative Application

In this section, we estimate the Ricardian model of trade with a cross-nested CES
(CNCES) correlation function. We treat the nests of the correlation function as an
unobserved dimension of the data. In order to recover these latent factors, we es-
timate a multi-sector version of our model using disaggregate sectoral trade flow
and tariff data. Our estimation procedure infers factor-level expenditure from the
sectoral data. By not pairing each nest to a sector, this procedure re-groups ob-
served sectors into latent technology classes. In this way, we can avoid imposing
that a sector, as defined by some arbitrary choice of aggregation available in the
data, corresponds to some fundamental aspect of the production process. Such
a choice, common in the literature, is not innocuous because it implies a gravity
structure at the sector level — a constant own-price elasticity within each sector
and IIA across sectors. Our estimation procedure provides a tractable and intu-
itive way to relax these restrictions.

4.1 Multi-Sector Model with Latent Factors

We use our results from the one-sector model in Section 2 and reinterpret an origin
country o as a sector-origin pair so. Consumers have CES preferences over the
continuum of goods, with elasticity of substitution η > 1.17 Each good v ∈ [0, 1]

is produced using one of many latent factors, k = 1, . . . , K, which can be thought
of as unobserved technology classes. Additionally, goods are assigned a sectoral
label, so that sectors s = 1, . . . , S consist of groupings of goods observed in the
data. While the technology classes captured by the latent factors are fundamental
aspects of the production process, sectors are not — they are categories designed
to apply policies, such as import tariffs. With this interpretation of sectors, firms
choose under which sectoral label to produce a good.

16The wage in country 3 is W3 =
(

1 + 2
1+θ−ρ
1+θ

)1/θ
, while the wage in countries 1 and 2 is W =

2−
ρ

1+θW3. Trade shares are: πod = 2−ρW−θ = 2−
ρ

1+θW−θ3 , for o = 1, 2, and π3d = W−θ3 . Wages are
decreasing in the parameter ρ, while trade shares from country 3 increase with ρ, and trade shares
from countries 1 and 2 decrease with ρ.

17 In contrast to the literature, consumers have preferences over individual goods directly rather
than over a composite sectoral good that aggregates individual goods. See Appendix C.1.
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Productivity for a good v assigned to sector s in country o for delivery to d is
Zsod(v). It captures both the production-and-delivery technology, which includes
components of trade costs such as geography, as well as the efficiency losses asso-
ciated with choosing a particular sectoral category. We assume that productivity
is distributed multivariate max-stable Fréchet with scale Tsod and a CNCES corre-
lation function with weights ωksod > 0,

∑
k ωksod = 1, and correlation parameters

ρk ∈ [0, 1). Using (6) yields

P[Zsod(v) ≤ zso,∀s, o] = exp

− K∑
k=1

(
S∑
s=1

N∑
o=1

(T ∗ksodz
−θ
so )

1
1−ρk

)1−ρk
 , (18)

where T ∗ksod ≡ ωksodTsod. Within k, correlation is symmetric across origins and
sectors and parameterized by ρk. Across k, productivity draws are independent.
However, because both sectors and origins can share latent factors, productivity
draws are not independent across sectors and countries.

Goods shipped from country o to d in sector s are subject to tariffs tsod. Destinations
source goods from the sector-origin pair with the lowest unit cost, mins,o

tsodWo

Zsod(v)
.

Thanks to max-stability, sectoral expenditure can be solved in closed form and
equals the share of goods sourced from sector s and origin o, taking the same form
as (12): πsod =

∑K
k=1 π

∗
ksod with

π∗ksod =
(T ∗ksod(tsodWo)

−θ)
1

1−ρk

S∑
s′=1

N∑
o′=1

(T ∗ks′o′d(ts′o′dWo′)−θ)
1

1−ρk︸ ︷︷ ︸
πWksod

[
S∑

s′=1

N∑
o′=1

(T ∗ks′o′d(ts′o′dWo′)
−θ)

1
1−ρk

]1−ρk

K∑
k′=1

[
S∑

s′=1

N∑
o′=1

(T ∗k′s′o′d(ts′o′dWo′)−θ)
1

1−ρk′

]1−ρk′

︸ ︷︷ ︸
πBkd

.

(19)
Here, πWksod is the within-factor share across sectors and origins, and πBkd is the
between-factor share.

The cross-price elasticities (so 6= s′o′) of (19) are

εsos′o′d = θ

K∑
k=1

ρk
1− ρk

πWksodπ
W
ks′o′d

πBkd
πsod

≥ 0, (20)

with the own-price elasticity (so = s′o′) coming from the restriction
∑

s′,o′ εsos′o′d =

−θ. These elasticities are of the same form as the elasticities in (13), but now they
include the possibility of cross-sector — in addition to cross-origin — substitution
through the sharing of latent factors: Increases in the real import price in sector s′

can increase expenditure shares in a different sector s. A high expenditure elastic-
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ity between two sectors can be due to high factor-level correlation ρk and/or two
sectors with similar within-factor expenditures — high πWksodπ

W
ks′o′d. When ρk = 0

for all k, εsos′o′d = −θ1{so = s′o′}. This is the CES case in (10).

The form of these cross-price elasticities motivates the reduced-form evidence we
provide in the next section, which uses correlation in different dimensions of ex-
penditure shares to construct indices of exposure to third-party tariffs.

However, for the purpose of estimation, this model is over-parameterized because
the productivity distribution depends on both the observable dimensions of the
data — sectors, origins, and destinations — as well as on the unobservable latent-
factor dimension. To ensure that the model is not under-identified, it is necessary
to add some structure to the productivity distribution so that we have at most as
many parameters as available observations.

To such end, our latent-factor model (LFM) assumes that factor-level scale parame-
ters are separable between sector-factor and factor-origin-destination components,

T ∗ksod = (BskAkod)
θ. (21)

The component Bsk captures how useful factor k is for sector s, while Akod mea-
sures the productivity of origin o in factor k when delivering to destination d, cap-
turing barriers to apply technologies in a country as well as geographical barri-
ers to trade (e.g. distance). The key consequence of this separability assumption
is that, because Bsk is identical across countries, sectoral comparative advantage
arises from an origin’s ability to use each latent factor, measured by Akod.

The separability assumption reduces the number of model parameters and helps
to identify the latent factors. Concretely, replacing T ∗ksod in (19) by the condition in
(21) yields

πsod =
K∑
k=1

(
tsod
t∗kod

)−σk
λskπ

∗
kod, (22)

where

σk ≡
θ

1− ρk
, λsk ≡

Bσk
sk∑S

s=1B
σk
sk

, and t∗kod ≡

(
S∑

s′=1

t−σks′odλs′k

)− 1
σk

, (23)

are, respectively, the within-factor elasticity, the weight that sector s carries on
factor k, and a factor-level tariff index. The key feature of (22) is that sectors
load on factor-level expenditure shares π∗kod through (relative) tariffs and the factor
weights, λsk. These weights are identical across countries — reflecting the assump-
tion that sectoral comparative advantage arises from a country’s ability to use each
latent factor.
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Under (21), the model is no longer under-identified provided that the following
rank condition is also satisfied:

K ≤ S ×N2

S +N2
. (24)

Note that S×N2

S+N2 < S, so that estimating (22) requires compressing the sectoral data
on tariffs and expenditure to a lower-dimensional latent-factor level, similar to
principal-component analysis.

The factor-level expenditure share in (22) is given by

π∗kod =
(t∗kodWo/Akod)

−σk∑N
o′=1(t∗ko′dWo′/Ako′d)−σk︸ ︷︷ ︸

πWkod

[∑N
o′=1(t∗ko′dWo′/Ako′d)

−σk
] θ
σk

∑K
k′=1

[∑N
o′=1(t∗k′o′dWo′/Ak′o′d)−σk′

] θ
σk′︸ ︷︷ ︸

πBkd

, (25)

where, again, the first term on the right-hand side is the within-factor expenditure
share, and the second term is the between-factor share. This expression has a grav-
ity structure as defined by ACR: IIA holds within each factor and within-factor
elasticities are constant and equal to σk.

The functional form in (25) is reminiscent of sectoral trade models in the gravity
literature. The LFM reduces to those models if we force latent factors to be specific
to sectors, which amounts to restricting Bsk = 0 for s 6= k, in (21). In this case,
λsk = 1{k = s}, and we get a gravity specification at the sectoral level:

πsod =
(tsodWo/Asod)

−σs∑N
o′=1(tso′dWo′/Aso′d)−σs

[∑N
o′=1(tso′dWo′/Aso′d)

−σs
] θ
σs

∑S
s′=1

[∑N
o′=1(ts′s′dWo′/As′o′d)−σs′

] θ
σs′

. (26)

This sectoral gravity model (SGM) is a special case of LFM, with factor-level tariffs
corresponding to observed tariffs, and factor-level expenditure corresponding to
sectoral expenditure.

There are two key consequences of assuming sector-specific technology. First, the
within-sector own-price elasticity of substitution is constant and equal to σs. Sec-
ond, there is no cross-sector substitution since the elasticity in (20) collapses to

εsos′o′d = (σs − θ)πWso′d1{s = s′}. (27)

Now, εsos′o′d = 0 whenever s 6= s′, implying that IIA holds within each sector.

These assumptions make the SGM convenient for estimation because one can ex-
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ploit within-sector variation in tariffs and expenditure to estimate σs. The model,
however, is still under-identified because K = S, and we need to estimate the
parameters Asod and elasticities σs. A common and relatively flexible approach
to reducing the dimensionality of the SGM is to introduce a fixed-effect specifica-
tion where Asod is multiplicatively separable into origin-destination, sector-origin,
and sector-destination components. Under these additional restrictions, SGM esti-
mates correspond to structural estimates of σs.

Although the SGM restrictions are convenient for estimation, they are a direct
and testable consequence of assuming that factors are specific to sectors. We next
present reduced-form evidence against a constant sectoral own-price elasticity and
zero cross-sectoral elasticities. This evidence suggests that the SGM restrictions
should be relaxed.

4.2 Reduced-Form Evidence

We estimate various specifications of a sectoral gravity-type equation and find ev-
idence that the sectoral gravity model (SGM) is misspecified and that our latent-
factor model (LFM) is consistent with correlation patterns observed in the expen-
diture data.

We use 14 aggregate sectoral categories from the World Input-Output Database
(WIOD), denoted by j, and add a time subscript t to estimate the following speci-
fication:

πjodt ≡
Xjodt

Xdt

= exp
[
D1
jot +D2

jdt +D3
jod + (βj + α′Geood) ln tjodt + δ′Ijodt

]
νjodt. (28)

The variable tjodt is a tariff index for sector j.18 D1
jot, D2

jdt and D3
jod are sector-

origin-time, sector-destination-time, and sector-origin-destination fixed effects, re-
spectively. Geood includes bilateral variables, such as geographical and income
distance between the origin and destination. We include interactions of these vari-
ables with tariffs to allow the own-price elasticity to vary across origins within a
sector. The variable Ijodt includes three indices that capture potential departures
from IIA.

To construct the indices, we use correlation patterns of expenditure observed in
the data, shown in Figures 1b, 1c, and 1d. The figures use sector-origin-destination
expenditure shares averaged over time, and sort sectors by WIOD classification
code (see Appendix Table D.1) and countries by GDP per capita.

18This index is the result of aggregating 4-digit SITC tariffs into the WIOD sectoral categories,
following a model-consistent procedure (see Appendix D.4).
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Figure 1: Correlation Matrices for Expenditure Shares. WIOD sectoral data.

(a) Origin-sector-destination (b) Origin-destination

(c) Origin-sector (d) Sector

Notes: Each entry shows expenditure correlations: (1a) across destinations between a sector-origin
pair; (1b) across destinations between two origins, COrigin - Geo

oo′ ; (1c) across sectors between two
origins,COrigin-Sectors

oo′ ; and (1d) across origins between two sectors,CSectors
jj′ . Axes are sorted by WIOD

classification code for sectors and/or GDP per capita for countries. j refers to a WIOD sectoral
category. See Appendix Table D.1 for the WIOD sectoral classification.

Figure 1a is shown for comparison purposes and depicts correlation in expenditure
shares across destinations, for each sector-origin pair. This figure shows that most
correlation arises within a country across sectors, but we also observe correlation
between origins across sectors.

Our first index of exposure to third-party tariffs exploits correlation in expenditure
across destinations between two origins, after aggregating sectors at the origin-
destination level (to remove correlation induced by sectoral export patterns).

I
Origin-Geo
jodt =

∑
o′ 6=o

C
Origin - Geo
oo′ ln tjo′dt. (29)

C
Origin - Geo
oo′ are the entries in Figure 1b and reveal correlation patterns that are
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highly geographic and related to income levels — in fact, “geography” explains
95 percent of the variation observed in Figure 1a. This index increases for country
owhen tariffs rise in other countries with similar shares of destination expenditure.

Our second index uses correlation between two origins induced by their exporting
sectors. In this case, we first average over destinations and compute sector-origin
level expenditure relative to worldwide expenditure in the sector (so that correla-
tion between two origins reflects similarity in comparative advantage).

I
Origin-Sector
jodt =

∑
o′ 6=o

C
Origin-Sector
oo′ ln tjo′dt. (30)

COrigin−Sector
oo′ are the entries in Figure 1c, and show that correlation primarily arises

between exporters of similar income. This index increases for country owith tariffs
in other countries with similar sectoral export shares.

Our final index is constructed based on correlation in expenditure between sectors
within exporters. In this case, we use correlation in sector-origin level expenditure
relative to the origin’s total expenditure.

ISector
jodt =

∑
j′ 6=j

CSector
jj′ ln tj′odt. (31)

CSector
jj′ denotes the entries in Figure 1d, which are identical across countries. They

show that, for instance, sectors related to more sophisticated manufacturing goods,
such as “Electrical and Optical Equipment” (12) and “Transport Equipment” (13)
are correlated with each other, as are sectors related to commodities, such as “Agri-
culture, Hunting, Forestry and Fishing” (1) and “Mining and Quarrying” (2). This
index increases with tariffs on an origin in a different but correlated sector, and will
allow us to detect patterns of cross-sector substitution within an origin country.

Table 1 presents PPML estimates of (28). If the SGM is correctly specified, we
should find that α = δ = 0 in (28). If the CES model is correctly specified, we
should further find that elasticities are the same across sectors.

We start in column 1 by restricting the sectoral elasticities to be common across
sectors and exclude additional covariates. The coefficient on tariffs corresponds to
a structural estimate of the ACR model where ρk = 0 for all k in (19). In this case,
α = δ = 0 and βj = −θ = −2.63 for all j.19

In columns 2 to 5, we allow for βj to be heterogenous across sectors. The estimates
in column 2 correspond to structural estimates of the SGM where βj = −σj , with

19This estimate is in the range estimated in the literature using sectoral data and the restriction
to a uniform coefficient across sectors and countries (e.g. Boehm et al., 2021).
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Table 1: Sectoral Gravity Model and Specification Tests. PPML.

Dep. variable πjodt ≡ Xjodt/Xdt

(1) (2) (3) (4) (5)

β -2.63***
(0.221)

β̄ =
∑J
j βj/J -2.70*** -9.07*** -2.49*** -8.07***

(0.233) (1.676) (0.261) (1.679)
lnDistod × ln t̄jodt 0.99*** 0.87**

(0.293) (0.293)
| lnYot − lnYdt| × t̄jodt 1.40** 0.92*

(0.442) (0.439)
I

Origin-Geo
jodt 0.79** 0.28

(0.265) (0.271)
I

Origin-Sector
jodt -0.005 -0.08

(0.057) (0.058)
ISector
jodt 1.13*** 0.79***

(0.175) (0.173)
| lnYot − lnYdt| No No Yes No Yes

Deviance 7.025 7.003 6.908 6.940 6.886
Degrees of Freedom† 7,814 7,827 7,830 7,830 7,833

Null Hypothesis βj = β α = 0 δ = 0 α = δ = 0
χ2 49.025 55.612 58.777 73.666
Degrees of Freedom 13 2 3 5
P-Value 0.0 0.0 0.0 0.0

Notes: Estimates of (28). Number of observations = 121,086. j refers to a WIOD sectoral category.
Distod = distance between origin o and destination d. Yot = GDP per capita in o at time t. t̄jodt

denotes tjodt relative to the sectoral mean. IOrigin-Geo
jodt , IOrigin-Sector

jodt , and ISector
jodt are defined in (29), (30),

and (31). All specifications include j × o× t, j × d× t, and j × o× d fixed effects. For columns 2-5 the
average tariff coefficient across sectors is reported, with estimates by sector from column 2 reported
in Appendix Table D.1. †: Model’s degrees of freedom. Last panel shows results of Wald tests for
the null hypothesis that: sectoral elasticities are equal (column 2); and the tariff interactions as well
as all indices are jointly insignificant (columns 3 to 5). Standard errors clustered at the sector-origin-
destination level are in parenthesis, with levels of significance denoted by *** p < 0.001, and ** p <
0.01 and * p<0.05.

22



σj 6= σj′ , for j 6= j′, and α = δ = 0. Not surprisingly, these estimates imply
an average of 2.7, almost identical to the estimate in column 1.20 The Wald test
strongly rejects that elasticities are equal across sectors.

Columns 3-5 add tariff interactions and our indices.21 Column 3 shows that both
interactions are significant, suggesting that the own-price elasticity becomes more
inelastic when geographical and income distance between an origin and destina-
tion increases. This column’s Wald test strongly rejects the SGM prediction of a
constant own-price elasticity within each sector.

Column 4 includes our three indices of exposure to third-party tariffs and directly
tests the SGM prediction that IIA holds within each sector. While our indices of
“geographic” (IOrigin-Geo

jodt ) and cross-sector (ISector
jodt ) exposure to third-party tariffs are

positive and significant, the index of cross-origin sectoral exposure (IOrigin-Sector
jodt )

is not. The insignificance of this index paired with the significance of the sec-
toral index suggests that departures from IIA operate through sectoral similarity
within exporters rather than through similarity in sectoral comparative advantage
between exporters. Note that, in column 5, IOrigin-Geo

jodt is no longer significant after
tariff interactions are also included, suggesting that this index indeed captures de-
partures from IIA related to bilateral geographic factors. The Wald tests for both
columns 4 and 5 strongly reject that these indices and interactions are jointly in-
significant, providing evidence that the SGM is misspecified.

Summing up, Table 1 provides strong evidence against constant within-sector elas-
ticities and zero cross-sector elasticities. Since the assumption that sectors corre-
spond to latent factors implies both these restrictions, these results point toward
relaxing the restrictions of the SGM.

The results in Table 1 also suggest that the LFM is on the right track. The insignifi-
cance of the index of cross-country sectoral exposure to third-party tariffs, together
with the significance of the index of cross-sector exposure, suggests that depar-
tures from IIA are associated with patterns of cross-sector substitution within an
origin rather than with within-sector cross-origin expenditure patterns — that is,
it is reasonable to assume that latent factors are re-grouping sectors, not exporters.
Moreover, because the index of cross-sector exposure to third-party tariffs is based
on global correlation patterns across sectors, our findings suggest that it is reason-
able to focus on a latent-factor structure where factor weights are common across
countries, for each sector. This is precisely what our identifying assumption does

20The estimates by sector are reported in Appendix Table D.1 and are in the range of the sectoral
elasticities estimated in Caliendo and Parro (2015).

21In this case, tjodt is deflated by the sector mean because the inclusion of sector-destination-time
fixed effects absorbs that variation. The coefficients on the tariff interactions are interpreted relative
to the sectoral average.
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— countries load on sectors through common weights λsk.

We provide further reduced-form support for the LFM assumption in (21) by per-
forming a principal-component analysis that predicts πjodt based on decomposi-
tions of the average expenditure share across destinations d. This analysis reveals
that a structure where sectors load on (a few) origin-destination-time specific latent
factors through common weights captures the data better than a structure where
origins load on sectors-destination-time specific latent factors.22

Note that although principal-component analysis is a data-compression proce-
dure, it typically produces estimates with negative entries, so that we cannot use
it to structurally estimate the LFM. Our theory implies that latent-factor weights
and expenditure shares are all non-negative. To estimate the LFM, we not only
need an alternative to sectoral gravity, but we also need an alternative to principal-
component analysis. We present our estimation procedure next.

4.3 Latent-Factor Model Estimation

Our reduced-form evidence suggests that departures from IIA remain even when
considering sectoral WIOD aggregate categories. The implication is that sectoral
gravity regressions do not recover the true import demand system. We propose
a tractable and flexible procedure based on our latent-factor model (LFM), which
departs from sectoral gravity by relaxing the assumption that factors are specific
to sectors. In this way, we allow for heterogenous and non-zero elasticities of sub-
stitution across countries and sectors. Like principal-component analysis, the LFM
procedure entails compressing disaggregate sectoral data into a few latent factors.

We use disaggregate 4-digit SITC sectoral tariff and trade flow data from COM-
TRADE, combined with WIOD aggregate sectoral expenditure data, for 1999-2007
(see Appendix D for details). Our sample has 787 sectors and 31 countries. We
denote the 4-digit SITC sectors by s, in contrast to the index j used for the more
aggregate WIOD sectoral data.

Our LFM estimator infers latent-factor expenditure and latent-factor weights from
observed sectoral expenditure and tariffs. We assume that factor weights and
factor-level elasticities are time invariant, while factor-level expenditure and tariffs

22The principal-component structures are: π̂OPC
jodt =

∑K
k=1 λ

OPC
ok φOPC

kjdt (origins load on latent sector-
destination specific factors); and π̂SPC

jodt =
∑K
k=1 λ

SPC
jk φSPC

kodt (sectors load on latent origin-destination
specific factors). The factor weights λOPC

ok are the right eigenvalues of the matrix of average ex-
penditure across destinations, while λSPC

jk are the left eigenvalues of that matrix. The first four
eigenvectors explain 96.2 percent of the variation in average cross-destination expenditure. Given
the factors weights, we solve for φOPC

kjdt and φSPC
kodt. Their predicted values explain, respectively, 19.9

and 90.7 percent of the variation in πjodt.
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can vary over time. For convenience, we define φ∗kodt ≡ (t∗kodt)
σkπ∗kodt, and re-write

(22) as

πsodt =
K∑
k=1

t−σksodtλskφ
∗
kodt. (32)

Observed sectoral shares are linear in the unobserved components λsk and φ∗kodt,
allowing us to build an estimation algorithm based on non-negative matrix factor-
ization, combined with the pseudo-Poisson maximum likelihood (PPML) method
used in the gravity literature (Silva and Tenreyro, 2006; Fally, 2015).

For a given choice of K, we set Σ = {σk}k, Λ = {λsk}s,k, and Φ∗ = {φ∗kodt}k,o,d,t to
solve

Σ̂, Λ̂, Φ̂∗ = arg minσ≥0,Λ≥0,Φ≥0

∑
s,o,d,t

`

(
πsodt,

K∑
k=1

t−σksodtλskφ
∗
kodt

)
, (33)

where `(x, x̂) ≡ 2(x ln(x/x̂)−(x−x̂)). One convenient feature of PPML is that, as es-
tablished by Fally (2015), it is the unique likelihood-based criterion that preserves
the restriction that predicted aggregate bilateral expenditure matches observed ex-
penditure. By using a Poisson deviance, we ensure that our estimates of bilateral
factor-level expenditure exactly aggregate to observed bilateral trade flows, con-
sistent with the model — i.e. our prediction for

∑
k π
∗
kodt matches exactly the data

on πodt.

To perform the data compression embedded in the LFM and solve (33), we adapt
techniques from the literature on non-negative matrix factorization. Specifically,
we extend the multiplicative updating algorithm in Lee and Seung (1999, 2001)
to accommodate both missing data and simultaneous estimation of σk (see Ap-
pendix E for details). To better see the connection to those procedures, suppose
for a moment that there are no tariffs. Then, we can write (32) in matrix form
as Π = ΛΦ∗. The non-negative matrix factorization procedure decomposes the
observed expenditure share matrix, Π, into two matrices: Λ containing the sector-
specific components and Φ∗ containing the country-pair-time components of sec-
toral expenditure. As in all factor models, an important concern is a lack of identifi-
cation coming from transformations of the latent factors.23 However, the presence
of non-negativity constraints in (33) restricts the transformations that are feasible,
meaning that the factorization is unique (up to permutation and scale of factors)
under relatively general conditions (Fu et al., 2019). We present — and provide
intuition for — sufficient conditions for identification of non-negative matrix fac-
torization in Appendix E.1. In a nutshell, uniqueness is ensured when a large
amount of data is used for the factorization.

The case of no tariffs also clarifies that tariffs are not used for the estimation of
23For any invertible matrix R we have Π = Λ̃Φ̃∗ for Λ̃ = ΛR−1 and Φ̃∗ = RΦ∗.
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latent-factor weights and expenditures. However, they are crucial cost shifters to
estimate the within-factor elasticities σk. In fact, LFM uses within- and cross-sector
variation in the data to estimate those elasticities — in contrast to SGM, which only
uses within-sector variation to estimate sectoral elasticities σs. Identification of σk
comes from the conditional independence assumption embedded in our Poisson
criterion: E[υsodt | tsodt,Λ,Φ∗] = 0 for υsodt ≡ πsodt∑

k t
−σk
sodtλskφ

∗
kodt

− 1. This assumption is

analogous to the conditional independence assumption of PPML gravity estima-
tion of tariff elasticities (e.g. equation 28).

We choose the number of latent factors by estimating (33) for K = 1, 2, . . . , and
perform likelihood ratio tests until we fail to reject that the number of latent factors
is K versus the alternative of K + 1.24 The rank condition in (24) indicates that we
could fit as many as 432 latent factors.

Lastly, we need to estimate the shape parameter θ and the correlation function pa-
rameters ρk, for each k. Recall that σk = θ/(1 − ρk), so that given our estimates
of factor-level elasticities, choosing a value for θ pins down each ρk. Additionally,
we have the structural restriction that θ > 0 and ρk ≥ 0 so that θ ∈ (0, σk] for each
k. The largest possible value of θ that is consistent with our estimates of factor-
level elasticities is mink=1,...,K σk. We use this upper bound on the shape parameter
as our baseline estimate. This value ensures that we conservatively estimate of
the gains from trade because, conditional on our estimates of expenditure shares and
elasticities at the factor-level, the gains from trade decrease as θ increases.25 For ro-
bustness, we implement an alternative estimation of θ, based on the factor-level
gravity structure of (25), that uses the between-factor variation produced by the
LFM procedure — i.e., the estimated factor-level expenditures and tariff indices.
This two-step procedure yields estimates of θ that are not statistically different
from our baseline estimate (see Appendix G).

4.4 Results

We next analyze the results from the LFM estimation. When we show variables at
a higher level of aggregation than 4-digit SITC level, we use the factor weights λsk

24The Poisson deviance function is homogenous of degree one and therefore its value depends
on scaling of the data. The scaling does not impact the parameters’ estimation, but it does matter
for likelihood ratio tests. To address this scaling issue, we scale the Poisson deviance by the mean-
variance ratio in the data.

25 From (17) and Hölder’s inequality, for any θ′ ∈ (0, θ],

Wd/Pd
WA
d /P

A
d

=

[
K∑
k=1

(πWkdd)
θ
σk πBkd

]− 1
θ

≤

[
K∑
k=1

(πWkdd)
θ′
σk πBkd

]− 1
θ′

θ′→0→
K∏
k=1

(πWkdd)
−π

B
kd
σk .
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Table 2: LFM Selection: Likelihood Ratio Test.

Number of factors, K 1 2 3 4 5 6 7 8 14r 14

R2 4-d SITC expenditure 0.725 0.79 0.804 0.826 0.835 0.938 0.937 0.936 0.998 0.973
within odt 0.092 0.158 0.197 0.24 0.266 0.306 0.334 0.362 0.379 0.456

R2 WIOD expenditure 0.722 0.788 0.803 0.825 0.836 0.938 0.938 0.936 1.000 0.973
within dt 0.479 0.665 0.658 0.666 0.681 0.873 0.891 0.875 1.000 0.932
within jdt 0.849 0.885 0.901 0.912 0.920 0.957 0.955 0.955 1.000 0.971
within odt 0.221 0.382 0.458 0.521 0.614 0.657 0.693 0.673 1.000 0.787

Deviance 377,451 333,999 310,594 292,161 278,379 266,955 256,823 248,288 260,822 210,554
Degrees of Freedom† 9,436 18,872 28,308 37,744 47,180 56,616 66,052 75,488 121,873 132,104

Null Hypothesis 1 2 3 4 5 6 7 - 7 14r

χ2 43,452 23,405 18,433 13,783 11,423 10,133 8,535 - 46,269 50,268
Degrees of Freedom 9,436 9,436 9,436 9,436 9,436 9,436 9,436 - 66,052 10,231
P-value 0.0 0.0 0.0 0.0 0.0 0.0 1.0 - 1.0 0.0

Notes: Results from estimating (33) with K = 1, . . . , 8; 14. Number of observations = 5,528,764.
j refers to a WIOD sectoral category, while s refers to a 4-digit SITC sector. K = 14r refers to a
specification with 14 factors but factor weights at the WIOD-level restricted as in the sectoral gravity
model (SGM). †: Model’s degrees of freedom. Last panel shows likelihood ratio tests comparing
specifications across columns.

to aggregate across 4-digit SITC sectors.

We estimate that the number of latent factors is K = 7. Table 2 shows that K = 8

is not significantly different from K = 7. Seven factors explain about 94 percent
of the variation in the sectoral trade flow data, and more than 33 percent of the
variation in expenditure shares within each origin-destination. The fit is also very
high if we aggregate sectors at the WIOD level.26 Additionally, a LFM model with
K = 14 (i.e., the same number of WIOD sectors used in Table 1 for SGM) is not
significantly different from K = 7. That said, although K = 14 is statistically
indistinguishable from the LFM with K = 7, it is significantly different from LFM
with K = 14 plus Λ constrained to match the restrictions of SGM at the WIOD
sector level, which we denote by K = 14r.27 This result provides further evidence
that the SGM is misspecified. Indeed, it is notable that despite exactly fitting the
data at the WIOD sectoral level (by construction) and using almost twice as many
parameters, the deviance of K = 14r is higher than LFM with K = 7.

In Table 3, we go back to the same gravity-type regressions as in Table 1 adding
the prediction for sectoral (WIOD-aggregate) expenditure from LFM. Are the tariff
interactions and the indices capturing departures from IIA still significant? That
is, does LFM capture the patterns in the data that SGM could not capture? Overall,
LFM succeeds in capturing those patterns: Both tariff interactions as well as the

26Further linking the LFM estimates to the correlation matrices in Figure 1, and using j for a
WIOD sectoral aggregate, our estimated

∑
k λ̂jkλ̂j′k and observed

∑
od πjodπj′od have a correlation

coefficient of 0.44, while for
∑
k φ̂
∗
kodφ̂

∗
ko′d′ and

∑
j πjodπjo′d′ the correlation is 0.81.

27Formally, let j(s) be the WIOD sector that the 4-digit SITC sector s belongs to. The restriction
is that λsk = 0 if j(s) 6= k.
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Table 3: Latent-Factor Model (LFM) and Specification Tests. PPML.

Dep. variable πjodt ≡ Xjodt/Xdt

(1) (2) (3) (4) (5) (6)

ln π̂LFM
jodt 1.01*** 0.982*** 0.982*** 0.981*** 0.981***

(0.006) (0.01) (0.01) (0.01) (0.01)
ln π̂LFM

jodt − ln π̂U,LFM
jodt -0.526***

(0.082)
lnDistod × ln t̄jodt 0.873** 0.025 0.021 0.004

(0.293) (0.131) (0.133) (0.131)
| lnYot − lnYdt| × ln t̄jodt 0.915* 0.3 0.232 0.081

(0.439) (0.212) (0.216) (0.216)
I

Origin-Geo
jodt 0.277 -0.058 -0.121 -0.126

(0.271) (0.143) (0.157) (0.153)
I

Origin-Sector
jodt -0.084 -0.024 -0.028 -0.033

(0.058) (0.032) (0.033) (0.032)
ISector
jodt 0.793*** 0.288*** 0.257** 0.145

(0.173) (0.082) (0.084) (0.086)
SGM Variables No Yes Yes Yes Yes Yes
| lnYot − lnYdt| No Yes Yes No Yes Yes
Deviance 53.66 6.886 2.961 2.959 2.959 2.951
Degrees of Freedom† 2 7,833 7,831 7,831 7,834 7,835

Null Hypothesis LFM α = δ = 0 α = 0 δ = 0 α = δ = 0 α = δ = 0
χ2 2.757 73.666 4.34 12.342 13.111 3.97
Degrees of Freedom 1 5 2 3 5 5
P-Value 0.097 0.0 0.114 0.006 0.022 0.554

Notes: Estimates of (28) augmented by LFM predictions. Number of observations = 121,086. j refers
to a WIOD sectoral category. Column 2 corresponds to column 5 in Table 1. ln π̂LFM

jodt = LFM prediction
for lnπjodt. ln π̂U,LFM

jodt is the prediction under uniform 4-digit SITC tariffs within each factor. Distod =
distance between o and d. Yot = GDP per capita in o at time t. t̄jodt = tjodt relative to the sectoral
mean. I

Origin-Geo
jodt , IOrigin-Sector

jodt , and ISector
jodt are defined in (29), (30), and (31). SGM variables refers to

sector-specific coefficients for log tariffs, and j × o × t, j × d × t, and j × o × d fixed effects. †: Model’s
degrees of freedom. Last panel shows results of Wald tests for the null hypothesis that: the coefficient
on ln π̂LFM

jodt is one (column 1), the tariff interactions and all indices are jointly insignificant (column 2
to 6). Standard errors clustered at the sector-origin-destination level are in parenthesis, with levels of
significance denoted by *** p < 0.001, and ** p < 0.01 and * p<0.05.

origin-based indices are not significant, while the magnitude of the effect of the
index capturing cross-sector correlation, ISector

jodt , is reduced more than three-fold
(column 5). This index loses significance if we further control by the component
of ln π̂LFM

jodt attributable to dispersion in 4-digit SITC tariffs within each factor. This
means that, if anything, the LFM is predicting tariff effects that are too strong.

Next, we examine our estimates of factor-level elasticities, factor weights, and
factor-level expenditure.

The first panel of Table 4 shows estimates of factor elasticities, σk. We rank the
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latent factors according to their elasticities σk from largest (F1) to lowest (F7).
Given that θ = mink σk = 0.375, the factor with the highest correlation across coun-
tries is F1, with ρ1 = 0.927, and the factor with the lowest correlation is F7, with
ρ7 = 0. Additionally, the standard errors indicate that elasticities are tightly esti-
mated. Notice that the average across σk is 2.51, very close to the estimate of the
reduced-form tariff elasticity in column 1 of Table 1. This should not be surprising
since the LFM captures very well the correlation between tariffs and expenditure
observed in the data.28

The second panel of Table 4 presents statistics for the factor weights. First, the
fraction of factor weights that are zero ranges from 6.2 to 23.3 percent (e.g., 23.3
percent of 4-digit SITC sectors do not use technologies related to F6). Second, each
factor is concentrated in a few 4-digit SITC sectors. The largest weight for each
factor ranges from 0.045 to 0.281, with 90 percent of the weights below 0.003 for all
factors. Since

∑
s λsk = 1, this indicates a very high level of sectoral concentration

within each factor. Despite this concentration, the third panel of Table 4 shows that
each factor has some weight on essentially every WIOD-aggregate sector.29

Figures 2a and 2b show that factors are not unique to sectors. Less than 15 percent
of 4-digit SITC sectors use less than 4 factors, while about 75 percent use at least six
out of the seven factors. Additionally, Figures 2c and 2d examine how intensively
sectors (factors) use pairs of factors (sectors) by plotting histograms of a similarity
measure constructed using factor weights (0 = orthogonal weights; 1 = identical
weights). Similarity is concentrated close to zero for all factor-pairs, consistent
with the interpretation that latent factors are groups of distinct technologies, so
that they weigh on sectors in distinct ways. But many sector pairs never load on
the same factors (low similarity) and many sector pairs weigh on factors similarly.

To get some interpretation for each factor, we use our estimates of λsk to examine
how factors load on sectors, and our estimates of π∗kod to get patterns of expendi-
ture, export intensity, and domestic absorption by factor. First, the bottom panel of
Table 4 shows that F4 and F5 make up the majority of global expenditure, and are
barely traded. In contrast, the remaining factors are heavily traded, with self-trade
shares ranging from around 40 to 50 percent.

To get a sense of the identity of each factor, we turn to the use of factors across
sectors. Table 5 reports the top-three 2-digit SITC sectors with the highest weights
in each factor. For example, F2 is mainly used in the production of “Machinery

28 Appendix Table F.1 shows the elasticity estimates for each LFM with K = 1, . . . , 8. While the
heterogeneity in estimates increases with K, the average across σk remains around 2.5-3.

29For more details, see Online Appendix Figures O.1 and O.2.
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Table 4: Estimates of latent-factor elasticities, weights, and expenditure. Summary.

Factor

F1 F2 F3 F4 F5 F6 F7

σk 5.175 4.869 4.625 1.482 0.671 0.390 0.375
(0.142) (0.091) (0.142) (0.130) (0.076) (0.182) (0.091)

ρk 0.927 0.923 0.919 0.747 0.44 0.038 0.00

Factor Weights: 4-digit SITC Sectors

Zero Share 0.108 0.177 0.062 0.113 0.16 0.233 0.174
90th Percentile 0.003 0.002 0.003 0.003 0.002 0.001 0.001
99th Percentile 0.016 0.011 0.013 0.019 0.029 0.026 0.018
Maximum 0.045 0.281 0.113 0.036 0.059 0.105 0.277

Factor Weights: WIOD Sectoral Aggregates

1. Agriculture, Hunting, Forestry and Fishing 0.071 0.004 0.02 0.019 0.23 0.003 0.027
2. Mining and Quarrying 0.007 0.0 0.002 0.003 0.122 0.003 0.587
3. Food, Beverages and Tobacco 0.109 0.005 0.117 0.051 0.247 0.008 0.035
4. Textiles and Leather 0.43 0.032 0.024 0.017 0.057 0.01 0.005
5. Wood and Products of Wood and Cork 0.017 0.003 0.004 0.05 0.017 0.001 0.009
6. Pulp, Paper, Paper , Printing and Publishing 0.004 0.004 0.031 0.126 0.04 0.039 0.014
7. Coke, Refined Petroleum and Nuclear Fuel 0.005 0.001 0.005 0.118 0.002 0.001 0.035
8. Chemicals, Rubber, and Plastics 0.066 0.092 0.337 0.167 0.03 0.047 0.062
9. Other Non-Metallic Mineral 0.038 0.022 0.009 0.03 0.009 0.002 0.003
10. Basic Metals and Fabricated Metal 0.064 0.066 0.037 0.221 0.074 0.012 0.169
11. Machinery, Nec 0.051 0.132 0.166 0.094 0.015 0.042 0.011
12. Electrical and Optical Equipment 0.05 0.147 0.131 0.046 0.016 0.778 0.007
13. Transport Equipment 0.02 0.475 0.083 0.021 0.128 0.034 0.01
14. Manufacturing, Nec; Recycling 0.067 0.017 0.033 0.038 0.011 0.019 0.028

Factor-level Expenditure Shares

Expenditure Share 0.063 0.123 0.117 0.333 0.258 0.071 0.034
Self-Trade Share 0.514 0.455 0.492 0.900 0.962 0.408 0.438
Share of Total Self-Trade 0.044 0.076 0.078 0.406 0.336 0.039 0.02
Share of Total Exports 0.118 0.255 0.228 0.127 0.037 0.161 0.073
Rank 1 Exporter in 1999 CHN DEU USA CAN USA USA RUS
Rank 2 Exporter in 1999 ITA JPN DEU DEU BRA JPN CAN
Rank 3 Exporter in 1999 IND USA FRA USA CAN CHN GBR
Rank 1 Exporter in 2007 CHN DEU USA DEU BRA CHN CAN
Rank 2 Exporter in 2007 ITA JPN DEU NLD USA KOR RUS
Rank 3 Exporter in 2007 IND USA FRA USA AUS JPN AUS

Notes: Standard errors for σk are in parenthesis. θ = mink σk=1,...,K = 0.375 with ρk = 1− θ/σk.
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Figure 2: Factor Weights: Extensive and Intensive Margins.
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(c) Factor-pair similarity, count
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∑
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and Transport Equipment," and Germany, Japan, and the United States are the
countries using this technology the most, as measured by each country’s share of
total exports that rely on this factor. F6 relates to highly specialized manufac-
tured goods such as electronics and scientific instruments, and according to Ta-
ble 4, China overtook the United States as the main exporter of this factor between
1999 and 2007. And F7, the factor with the lowest cross-country correlation, is re-
lated to extraction of energy and minerals, and its major exporters are Russia and
Canada.

The estimates of factor-level expenditure and elasticities shape the structure of the
correlation function.30 Next, we compare correlation patterns and aggregate elas-
ticities implied by the LFM estimates. We compare them with estimates using the
SGM and CES model. For SGM, we use the estimates of σs coming from column 2
of Table 1 (reported in Appendix Table D.1), the WIOD sector-level data on expen-
diture, and the same estimate of θ as for LFM so that we ensure that differences

30The weights of Gd can be recovered from these variables: ωkod =
(πWkod)

1−ρkπB
ko′d∑K

k′=1
(πW
k′od)

1−ρ
k′ πB

k′o′d
.
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Table 5: Factor Weights: Top-Three Two-Digit SITC Sectors.

Factor Rank Code Description Weight

F1
1 84 Articles of apparel and clothing accessories 0.231
2 65 Textile yarn, fabrics, made-up articles, nes, and related products 0.107
3 05 Vegetables and fruit 0.076

F2
1 78 Road vehicles 0.422
2 77 Electric machinery, apparatus and appliances, nes, and parts, nes 0.092
3 74 General industrial machinery and equipment, nes, and parts of, nes 0.063

F3
1 54 Medicinal and pharmaceutical products 0.142
2 74 General industrial machinery and equipment, nes, and parts of, nes 0.068
3 51 Organic chemicals 0.063

F4
1 67 Iron and steel 0.136
2 64 Paper, paperboard, and articles of pulp, of paper or of paperboard 0.105
3 33 Petroleum, petroleum products and related materials 0.098

F5
1 79 Other transport equipment 0.115
2 28 Metalliferous ores and metal scrap 0.111
3 01 Meat and preparations 0.071

F6
1 75 Office machines and automatic data processing equipment 0.283
2 76 Telecommunications, sound recording and reproducing equipment 0.259
3 77 Electric machinery, apparatus and appliances, nes, and parts, nes 0.193

F7
1 33 Petroleum, petroleum products and related materials 0.291
2 32 Coal, coke and briquettes 0.115
3 68 Non-ferrous metals 0.092

Notes: Factor weights from estimating (33) and aggregating to 2-digit SITC.

in results solely come from the correlation function.31 For the CES model, we only
need the elasticity estimated in column 1 of Table 1.

Correlation patterns. How much substitutability and correlation do our estimates
imply? How do they compare with estimates from the SGM and CES model?
These patterns are important for understanding the quantitative predictions of
both models in counterfactual exercises.

First, we calculate averages of estimated factor-level elasticities σk, weighting by
the the share of total expenditure in country d on each factor k. For SGM, we
calculate the averages of sector-level elasticities σj , weighting by the share of total
expenditure in country d on each WIOD sector j (see Appendix Table D.1 for statis-
tics on sectoral expenditure). While the unweighted average across these elastici-
ties is around 2.5-2.7 in both models — matching the reduced-form average tariff
elasticity of 2.6 in column 1 of Table 1 — Figure 3a shows that the expenditure-

31 For the SGM, θ can be estimated with a two-step procedure, similar to the one in Appendix
G for LFM, that uses cross-sectoral variation in expenditure and tariffs. Columns 4-6 in Appendix
Table G.1 show that estimates are around 0.3, very close to our baseline estimate. This second step
is not present in most of the SGM in the literature (e.g. Costinot and Rodrìguez-Clare, 2014) because
the between-sector expenditure is constant — an assumption equivalent to assume that θ → 0. See
Appendix C.1 and also Adao et al. (2017).
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Figure 3: Elasticities, expenditure shares, and correlation: latent factors vs sectors.
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(b) Expenditure shares and correlation
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Notes: (3a): Average across factor-level (sector-level) elasticities σk (σj) weighted by between-factor
(between-sector) expenditure share in country d πBkd (πBjd). CES elasticity correspond to estimates in
column 1 of Table 1. (3b): Share of country d’s total expenditure on factors (sectors) with correlation
coefficient ρk (ρj) higher than 0.4 (orange), 0.7 (blue), and 0.85 (black). j denotes a WIOD sectoral
category. Year 2007.

weighted averages are very different between models. SGM (and CES) estimates
predict very similar (the same) average elasticities across countries, ranging from
around 2.7 for Spain, Italy, and Turkey to around 3.2 for Hungary, the heterogene-
ity coming from countries on the lower end concentrating expenditure on less sub-
stitutable sectors. In contrast, LFM estimates predict large variation across coun-
tries, ranging from 1.5 for India to almost 3 for Turkey, the difference coming from
the distribution of expenditure across factors, in each country. Note that the larger
average elasticities are similar between the two models — for instance Belgium and
Turkey — which reveals that the heterogeneity in LFM is driven by some countries
having more expenditure concentrated on low-elasticity factors. This suggests that
LFM will predict that there is more heterogeneity across countries in terms of how
their productivity correlates with the rest of the world. Given that ρk = 1 − θ/σk
(subscript j for SGM), Figure 3b confirms that the share of expenditure in high
correlation factors in LFM is almost always lower than the share in high correla-
tion sectors in SGM for all countries, regardless of the how we define the cutoff for
"high correlation". This means that, according to LFM, most expenditure is difficult
to substitute, while according to SGM, countries can substitute more easily.

Expenditure elasticities. We next compute the aggregate expenditure elasticities,
εoo′d, implied by our LFM estimates, and compare with those from the SGM.

Aggregating (22) across sectors and taking log-derivatives yields the aggregate
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Figure 4: Expenditure Elasticities: LFM vs SGM.

(a) ε̂oo′dt for o = o′ (b) ε̂oo′dt for o 6= o′

Notes: Expenditure elasticities εoo′dt calculated using (34) from latent-factor model (LFM) esti-
mates, and sectoral gravity model (SGM) estimates. Quantiles of εoo′dt for LFM vs SGM. Subscript
t refers to years 1999 to 2007.

elasticities
εoo′d =

∑
s,s′

πsod
πod

εsos′o′d, (34)

with εsos′o′d given by (20) for LFM and (27) for SGM.

Both models deliver positive aggregate effects for o 6= o′. However, elasticities
differ substantially between the two models, with the difference coming from the
restriction of SGM to εsos′o′d = 0 for s 6= s′. Figure 4 shows that this restriction mat-
ters quantitatively. We use a quantile-quantile plot for visual purposes. Implied
aggregate elasticities are different across the two models, particularly the own-
price elasticity of substitution in Figure 4a. This is related mainly to the different
predictions of the models in terms of the distribution of expenditure across factors
(sectors) with different degrees of correlation, as shown in Figure 3.

Figure 5 compares the values for elasticities for the LFM and the SGM focusing on
expenditure by US consumers. Figure 5a zooms into China and its competitors in
serving the United States, εo,CHN,USA, for o 6= CHN . Figure 5b considers the own-
price elasticity for each origin country in our sample that serves the US market,
εo,o′,USA, for o = o′.

LFM estimates indicate that Chinese goods are close substitutes for goods from
Turkey, Bulgaria, and Greece, for US consumers, while they are very poor sub-
stitutes for goods from Ireland, Netherland, Russia, and the United States itself.
In contrast, estimates from the SGM imply more similar cross-price elasticities
across alternative origins serving the US market and a larger own-price elastic-
ity for China (-2.9 vs -1.3). In general, elasticities are much more similar in the
SGM. Appendix Figure F.1 plots all the implied aggregate elasticities for the US
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Figure 5: Expenditure Elasticities, US market: LFM vs SGM.

(a) ε̂o,CHN,USA, by competitor country o
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latent-factor model (LFM) and sectoral gravity model (SGM). Figure 5a plots o 6= o′ when o′ =
CHN . Figure 5b plots o = o′ for each country o′ in our sample. Year 2007.

market, providing a comprehensive visualization of the differences between the
two models. For instance, the LFM implies lower substitution than SGM for goods
produced in the United States for the US market, and more competition (higher
substitutability) for goods from competing sources into the United States, in par-
ticular China.

The quantitative differences between LFM and SGM will create very different an-
swers to counterfactual exercises, as we show next.

5 Quantitative Exercises

Armed with our estimates, we perform two counterfactual exercises. First, we
compute the gains from trade starting from autarky. Second, we examine how US
protectionism impacts real wages, aggregate expenditure, and factor-level expen-
diture.

5.1 The Gains from Trade

Figure 6 shows the gains from trade against self-trade shares, using the estimated
versions of the latent-factor model (LFM), the sectoral gravity model (SGM), and
the CES model. Appendix Table F.2 reports the exact numbers.

For LFM, we use our estimates in Section 4.4 and calculate gains from trade ac-
cording to (17). For the SGM, we also calculate gains using (17), but under the
restriction that each latent factor k corresponds to a WIOD sector j. In this case,
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quantifying the gains from trade requires estimates of sectoral elasticities, which
we take from the SGM estimates coming from column 2 of Table 1, data on sec-
toral expenditure shares, and an estimate of θ. To ensure that differences in gains
between the models are solely due to differences in correlation, we use the LFM
estimate of 0.375 for both the SGM and the LFM — direct estimates of θ within
the SGM are close to this value (see Footnote 31). Finally, for the CES model, we
calculate gains from trade using (17) but restricting ρk = 0 for all k (i.e. the ACR
case). In this case, we use the estimate in column 1 of Table 1, and set θ = 2.65,
which corresponds to the trade elasticity under the independence restrictions that
lead to CES.

In Panel A, LFM estimates show that countries with the same self-trade share but
different degrees of correlation with the rest of the world have different gains from
trade. For instance, Canada has the same self-trade as Germany, but its implied
LFM gains are almost 90 percent higher because it is less correlated with the rest
of the world. Examining the patterns in Table 4 reveals that Canada is the top
exporter of factor F7, the factor related to the production of energy and minerals
and the one with the lowest correlation across countries (ρ7 = 0). In contrast, Ger-
many specializes in factors F2 and F3, which present high correlation in produc-
tivity across countries, and in factor F4, for which we estimate very high self-trade
shares (i.e. it is barely traded).

The heterogeneity in correlation that we estimate under LFM leads to gains from
trade that are much more heterogeneous than the gains calculated using the es-
timates from CES and SGM — controlling for self-trade, the standard deviation
differs by an order of magnitude (2.6 vs 0.07). For instance, the CES model deliv-
ers virtually the same gains for Canada and Germany — because they have almost
identical self-trade shares. The SGM, with its restrictive way of incorporating cor-
relation, barely increases the differences in gains among these countries relative to
CES (from one to four percent).

With respect to LFM, the quantitative version of SGM also deliver lower gains, in-
cluding for the large countries in our sample. Given the estimates shown in Section
4.4, this result should not be surprising: the LFM estimates that less expenditure
happens in factors with high correlation, while the SGM estimates more expendi-
ture in sectors with high correlation, implying a correlation function for SGM with
much higher similarity between trading partners than the one estimated under
LFM.

Panel B of Figure 6 further explores the sources of the quantitative differences in
gains between the two models by decomposing the gains in (16). The stars show
what gains would be if we removed the heterogeneity in within-factor (within-
sector for SGM) self-trade expenditure shares and replace them by observed self-
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trade shares. The gray dots show gains if we, instead, removed heterogeneity in
correlation coefficients and replace them by an average given by ρ̄ = 1− θ/σ̄, with
σ̄ denoting the average over σk (σj for SGM). Finally, the white dots show gains if
we remove both heterogeneity in within-factor self-trade shares and heterogeneity
in correlation coefficients. By construction, when both sources of heterogeneity are
removed, the gains from trade reduce to the ACR formula, and, since the average
elasticity of LFM (and SGM) is about the same as the trade elasticity estimated
under CES, we get nearly identical gains.

We can see from this decomposition that both sources of heterogeneity matter, but
a larger portion of the gains under LFM relative to ACR and SGM are driven by
heterogeneity in within-factor self-trade expenditure shares. Importantly, these
within-factor shares are what the LFM procedure uses to match the substitution
patterns in the data that the SGM fails to capture. It is primarily the difference
between within-factor vs within-sector expenditure shares that explains the quan-
titative difference in gains between the two models.

The large quantitative differences in the gains from trade implied by the differ-
ent models indicate that the way correlation in productivity is introduced matters.
In particular, it is important to let the data reveal correlation patterns rather than
restricting those patterns across sectors and countries. Having a tractable and flex-
ible procedure, like LFM, to estimate those patterns is key.

Input-output linkages. Even though input-output sectoral linkages are a different
economic mechanism from correlation in productivity, they may result in similar
quantitative predictions. Here, we compare the gains from trade calculated us-
ing our LFM estimates with the gains from trade implied by the estimated SGM
augmented by input-output linkages. Appendix C.1 presents the model in detail.

Following the literature (e.g. Costinot and Rodrìguez-Clare, 2014), we introduce
these linkages assuming that each sector s and country o has a Cobb-Douglas pro-
duction function that combines labor, with share 1 − αso ∈ [0, 1], and a composite
input from each sector, with shares αss′o ∈ [0, 1] and

∑
s′ αss′o = αso. Each sectoral

input aggregates individual goods according to a CES function. Consequently, the
cost of the input bundle in country o and sector s is cso = AsW

1−αso
o

∏
s′ P

αss′o
s′o , with

As > 0 and Ps′o the CES price index associated with the composite sectoral good.

This structure results in the same sectoral expenditure shares as in (26), with the
sectoral input bundle cso replacing the wageWo. In particular, the gravity structure
of SGM is preserved and the estimates of σs in column 2 of Table 1 do not change.
The variable cso, which captures the impact of input-output linkages on unit costs,
is simply absorbed into the sector-origin fixed effect.
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Figure 6: The Gains From Trade

A. Comparison of the gains from trade across estimated models.

(a) All countries
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(b) Large countries zoomed-in
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B. Decomposition of the gains from trade.

(c) LFM
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(d) SGM
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self-trade shares. Gray dots removed heterogeneity in correlation coefficients. White dots remove
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Gains from trade, however, do change, and are given by

Wd/Pd
WA
d /P

A
d

=

 S∑
s=1

(
S∏

s′=1

(πWs′dd)
−
ass′d
σm
s′

)−θ
πBsd

− 1
θ

, (35)

where ass′d are elements of the Leontief inverse matrix, (I − Ad)
−1, with αss′d the
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typical element ofAd. This formula collapses to the one in Costinot and Rodrìguez-
Clare (2014) when θ → 0 (see Appendix C.1).

The blue dots in Figure 6 are the gains from trade implied by the SGM with input-
output sectoral linkages. Gains present a similar pattern to the gains coming from
the SGM without those linkages, but, as is well known, since these linkages act as
an amplification mechanism for trade, gains are higher for all the countries in the
sample. However, gains are still less heterogenous — and lower — than the gains
from trade implied by LFM. For instance, the difference in gains between Canada
and Germany does not increase. The overall variation in gains across countries
(controlling for self-trade) only increases from 0.07 to 0.26, far from the standard
deviation of 2 implied by the LFM estimates. These results suggest that the forces
captured by LFM are different from the ones captured by sectoral input-output
linkages.32

5.2 The Cost of Protectionism

Consider the case where destination d raises tariffs on origin o′. The effect on the
real wage in d can be decomposed as

d lnWd/Pd
d ln to′d

= (1− πdd)
d lnWd/Wo′

d ln to′d︸ ︷︷ ︸
Domestic Wage Effect

−
∑

o 6=o′ and o 6=d

πod
d lnWo/Wo′

d ln to′d︸ ︷︷ ︸
Third Party Effect

− πo′d︸︷︷︸
Direct Tariff Effect

,

(36)
where to′d ≡ [

∑K
k=1(t∗ko′d)

−θ]−
1
θ . The first term is the effect on real wages in d of

changing Wd/Wo′ , while the second term is the effect on countries other than d and
o′. The third term is the direct effect on d of increasing tariffs on o′.

Figure 7 focuses on the effects of increasing US tariffs on China from 0 to 100 per-
cent. We compute each component of the change in US real wages by integrat-
ing each term of (36) from 0 to ∆t where ∆t is the total change in tariffs shown
on the x-axis. Our computations reveal that, for instance, the US welfare cost of
imposing a 50-percent tariff on China doubles in the LFM. The cumulative effect
of rising domestic wages is smaller, while the cumulative (negative) effect of ris-
ing third-party wages is larger for LFM. This is because US consumers substitute
less towards their own goods and more towards third parties in the LFM (second
panel of Figure 7). Additionally, the cumulative direct effect of higher tariffs is

32 An additional piece of suggestive evidence is that the correlation between the entries of the
cross-sectoral correlation matrix in Figure 1, CSectorjj′ , and the input-output direct requirement coef-
ficients from j to j′ is only 0.2. This is an indication that those linkages do not account for most of
the cross-sectoral correlation observed in the data.
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larger in the LFM because this effect is proportional to expenditure shares, and
as tariffs rise, US consumers shift expenditure away from China, dampening the
effect. However, US consumers substitute less away from China in the LFM, and
the cumulative direct cost on US consumers from rising tariffs is larger in the LFM
than in the SGM.

Appendix Figure F.2 and Appendix Table F.3 show moments of the elasticity in (36)
and its components including each country pair in our sample. Results confirm
that, on average, the smaller direct wage effect in the LFM together with the larger
third-party effect combine such that the cost of increasing tariffs is typically larger
in the LFM than in the SGM.

The difference in substitution patterns between the two models comes from dif-
ferences in expenditure shares across latent factors, which correspond to sectors
in the SGM. The bottom panel of Figure 7 shows that, for all factors, US expen-
diture shifts away from China when tariffs rise. However, it does so much more
rapidly for factors with a higher correlation across countries; US consumers are
able to find alternative suppliers for products made using those factors. Factors
that are not similar across countries are harder to substitute. For instance, F6,
which corresponds to technologies mostly used in goods such as electronics has a
very low correlation across countries and US consumers do not rapidly shift their
expenditure away from China. When latent factors correspond to sectors, own-
price sectoral elasticities tend to be more elastic, creating more similarity across
exporters. Consequently, shifts in US expenditure away from Chinese goods occur
more rapidly.

6 Conclusions

This paper is motivated by the old Ricardian idea that a country gains from trading
with those countries who are technologically dissimilar. We develop a Ricardian
model of trade that allows for rich patterns of correlation in technology between
countries, retains all the tractability of EK-type tools, and spans the entire class of
GEV import demand systems. We propose a cross-nested CES structure for correla-
tion that departs from the existing models by treating the nests as unobserved "la-
tent" dimensions of the data, and allows us to relax commonly made distributional
assumptions. In the context of a multi-sector trade model, we develop a flexible es-
timation procedure based on compressing highly disaggregate (sectoral) data into
few "latent factors." Our estimates successfully capture the rich substitution pat-
terns observed across countries and sectors, and find substantial heterogeneity in
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Figure 7: Effect of increases in US tariffs on China: LFM vs SGM.

A. US Real Wage.
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B. US Expenditure Shares.
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C. US Factor-level Expenditure Shares from China.
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correlation patterns. The implied gains from trade are much more heterogeneous
across countries than from estimates of models that restrict correlation patterns.
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A Proofs

A.1 Proof of Proposition 1

Proof. We show that for any max-stable multivariate Fréchet random vector there exists a
sequence of CNCES correlation functions that converges uniformly on compact sets to the
true correlation function. The proof is constructive and, to simplify notation, we suppress
the destination index, d, and the variety index, v.

Let {Zo}No=1 be distributed max-stable multivariate Frechet. Then by Theorem 1 in Kabluchko
(2009), {Zo}No=1 has a spectral representation—there exists a σ-finite measure space (X ,X, µ),
spectral functions Ao : X → R+ with

∫
X Ao(χ)θdχ < ∞ for each o = 1, . . . , N , and a Pois-

son process on R+ × X with points {Qi, χi}i=1,2,... and intensity θq−θ−1dqdµ(χ) such that
Zo = maxi=1,2,...QiAo(χi) for each o = 1, . . . , N . Given this Poisson process, we can ex-
press the joint distribution of {Zo}No=1 as

P [Z1 ≤ z1, . . . , ZN ≤ zN ] = P
[

max
i=1,2,...

QiAo(χi) ≤ zo,∀o = 1, . . . , N

]
= P

[
Qi ≤ min

o=1,...,N
zo/Ao(χi), ∀i = 1, 2, . . .

]
= P

[
Qi > min

o=1,...,N
zo/Ao(χi), for no i = 1, 2, . . .

]
= exp

[
−
∫
X

∫ ∞
mino=1,...,N zo/Ao(χ)

θq−θ−1dqdµ(χ)

]

= exp

[
−
∫
X

max
o=1,...,N

Ao(χ)θz−θo dµ(χ)

]
,

where the fourth equality follows from Campbell’s theorem (see Kingman, 1992). This
spectral representation provides us with an integral representation for the scale parameters
and the correlation function. In particular, the marginal distribution of Zo is Fréchet with
scale To ≡

∫
X Ao(χ)θdµ(χ) and shape θ: P[Zo ≤ zo] = limz′o→∞∀o′ 6=o e

−
∫
X maxo=1,...,N Ao(χ)θz−θo dµ(χ) =

e−
∫
X Ao(χ)θdµ(χ)z−θo . Also, the joint distribution satisfies (1) for G : RN+ → R+ defined by

G(x1, . . . , xN ) =

∫
X

max
o=1,...,N

fo(χ)xodµ(χ)

where fo(χ) ≡ Ao(χ)θ/To ∀o = 1, . . . , N . This function is the correlation function of the
max-stable multivariate Fréchet random vector.

We now use this representation to construct a sequence of CNCES correlation functions
that converges uniformly to G. To do so, we first construct a sequence of auxiliary func-
tions that are monotone increasing and converge point-wise to G.

For each o = 1, . . . , N , since Ao is measurable, fo is measurable and there exists a sequence
of monotone increasing simple functions, {fno}n=1,2,..., that converges point-wise to fo.
For each integer n, we construct an “auxiliary” function Fn : RN+ → R+ as follows. First,
define Rn ≡ ∪No=1{fno(χ) | χ ∈ X}. Since fno is simple for each o, Rn is finite. Next, let
{ãkn}Knk=1 be an enumeration of Rn and for each k = 1, . . . ,Kn define Xkn ≡ {χ ∈ X |
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ãkn = maxo=1,...,N fno(χ)}. Then for each o we have fno(χ) =
∑Kn

k=1 akno1{Xkn} for some
{akno}Knk=1 ⊂ RKn+ . Finally, set Fn(x1, . . . , xN ) = n

n+1

∑Kn
k=1 maxo=1,...,N aknoxoµ(Xkn). Note

that we have
∫
X maxo=1,...,N fno(χ)xodµ(χ) =

∑Kn
k=1 maxo=1,...,N aknoxoµ(Xkn). By mono-

tone convergence, {Fn}n=1,2,... converges pointwise to G since {fno}n=1,2,... is monotone
increasing and converges pointwise to fo for each o:

lim
n→∞

Fn(x1, . . . , xN ) = lim
n→∞

n

n+ 1
lim
n→∞

∫
X

max
o=1,...,N

ano(χ)xodµ(χ) = G(x1, . . . , xN ).

We now construct CNCES correlation functions that, up to a sequence of scaling con-
stants, lie between each sequential pair of auxiliary functions and converge uniformly

to G. For each n, chose a ρn ∈ [max{0, ρ̃n}, 1) for ρ̃n ≡ 1 −
ln n2+2n+1

n2+2n

lnN < 1. Choose
any ρkn ∈ [ρn, 1) for k = 1, . . . ,Kn and define Gn : RN+ → R+ by Gn(x1, . . . , xN ) ≡∑Kn

k=1

(∑N
o=1(ωknoxo)

1
1−ρkn

)1−ρkn
where ωkno ≡ δ−1

no aknoµ(Xkn) for each k = 1, . . . ,Kn with

δno ≡
∑Kn

k=1 aknoµ(Xkn) ≤ 1 for each o = 1, . . . , N . Because
∑Kn

k=1 ωkno = 1 and ρkn ∈ [0, 1),
Gn is a CNCES correlation function. Then

Fn(x1, . . . , xN ) =
n

n+ 1

Kn∑
k=1

max
o=1,...,N

aknoxoµ(Xkn) ≤ n

n+ 1
Gn(δn1x1, . . . , δnNxN )

≤ n

n+ 1

Kn∑
k=1

N1−ρkn max
o=1,...,N

aknoxoµ(Xkn) ≤ n

n+ 1
N1−ρn

∫
X

max
o=1,...,N

ano(χ)xodµ(χ)

≤ n2 + 2n

n2 + 2n+ 1
N1−ρn n+ 1

n+ 2

∫
X

max
o=1,...,N

an+1,o(χ)xodµ(χ) ≤ Fn+1(x1, . . . , xN )

where the first and second inequalities use maxo=1,...,N xo ≤ (
∑N

o=1 x
1/(1−ρ)
o )1−ρ ≤ N1−ρ maxo=1,...,N xo

for any ρ ∈ [0, 1), and the last inequality uses n2+2n
n2+2n+1

N1−ρn ≤ 1 due to our choice of ρn.
Define G̃n(x1, . . . , xN ) ≡ n

n+1Gn(δn1x1, . . . , δnNxN ). Then we have Fn ≤ G̃n ≤ Fn+1 ≤
G̃n+1 ≤ G. Since Fn → G point-wise, we also have G̃n → G point-wise. Moreover, since
(1) {G̃n}n=1,2,... is monotone increasing, (2) G̃n is continuous for each n = 1, 2, . . . , and
(3) G is continuous, we also have G̃n → G uniformly on compact sets by Dini’s theorem
(Theorem 7.13 in Rudin et al., 1964).

Finally, we show that the sequence of CNCES correlation functions converges uniformly
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on compacts sets to G. Fix any compact set X ⊂ RN+ . We have

lim
n→∞

sup
(x1,...,xN )∈X

|Gn(x1, . . . , xN )−G(x1, . . . , xN )|

≤ lim
n→∞

sup
(x1,...,xN )∈X

∣∣∣Gn(x1, . . . , xN )− G̃n(x1, . . . , xN )
∣∣∣

= lim
n→∞

sup
(x1,...,xN )∈X

∣∣∣∣n+ 1

n
G̃n(δ−1

1n x1, . . . , δ
−1
NnxN )− G̃n(x1, . . . , xN )

∣∣∣∣
≤ lim

n→∞

∣∣∣∣n+ 1

n
max

o=1,...,N
δ−1
no − 1

∣∣∣∣ lim
n→∞

sup
(x1,...,xN )∈X

G̃n(x1, . . . , xN )

= lim
n→∞

1

n
lim
n→∞

sup
(x1,...,xN )∈X

G̃n(x1, . . . , xN )

= lim
n→∞

1

n
sup

(x1,...,xN )∈X
G(x1, . . . , xN ) = 0

where the first line uses the triangle inequality and G̃n → G uniformly on compact sets, the
second line uses the definition of G̃n, the third line uses the fact that δno ≤ 1 ∀o = 1, . . . , N ,
the fourth line uses limn→∞ δno = limn→∞

∑Kn
k=1 aknoµ(Xkn) = limn→∞

∫
X ano(χ)dµ(χ) =∫

X ao(χ)dµ(χ) = 1, and the last line uses G̃n → G uniformly on compact sets. Therefore,
Gn → G uniformly on compact sets.

A.2 Proof of Proposition 2

Since destination prices are given by (7), the price index in destination d is

Pd =

[∫ 1

0
min

o=1,...,N
(Wo/Zod(v))1−ηdv

] 1
1−η

=

[
E max
o=1,...,N

(Zod(v)/Wo)
η−1dv

] 1
1−η

= γGd
(
T1dW

−θ
1 , . . . , TNdW

−θ
N

)− 1
θ

= Gd
(
P−θ1d , . . . , P

−θ
Nd

)− 1
θ
,

where Pod ≡ γT
−1/θ
od Wo, γ = Γ

(
θ+1−η
θ

) 1
1−η , due to Online Appendix Lemma O.5 and

Online Appendix Lemma O.2.
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The expenditure share of d on o is

πod ≡
Xod

Xd
=

∫ 1

0

(
Pd(v)

Pd

)1−η
1

{
Wo

Zod(v)
= Pd(v)

}
dv

= E
(
Pd max

o′=1,...,N

Zo′d(v)

Wo′

)η−1

1

{
Zod(v)

Wo
= max

o′=1,...,N

Zo′d(v)

Wo′

}
= E

[(
Pd max

o′=1,...,N

Zo′d(v)

Wo′

)η−1

| Zod(v)

Wo
= max

o′=1,...,N

Zo′d(v)

Wo′

]
P
[
Zod(v)

Wo
= max

o′=1,...,N

Zo′d(v)

Wo′

]

= E

[(
Pd max

o′=1,...,N

Zo′d(v)

Wo′

)η−1
]
P
[
Zod(v)

Wo
= max

o′=1,...,N

Zo′d(v)

Wo′

]

= E

[(
Pd(v)

Pd

)1−η
]
P
[
Zod(v)

Wo
= max

o′=1,...,N

Zo′d(v)

Wo′

]
,

= P
[

Wo

Zod(v)
= min

o′=1,...,N

Wo′

Zo′d(v)

]
using part 2 of Online Appendix Lemma O.6 and the previous result for the price level. By
part 1 of Online Appendix Lemma O.6,

P
[

Wo

Zod(v)
= min

o′=1,...,N

Wo′

Zo′d(v)

]
=
TodW

−θ
o Gdo(T1dW

−θ
1 , . . . , TNdW

−θ
N )

Gd(T1dW
−θ
1 , . . . , TNdW

−θ
N )

=
P−θod G

d
o(P

−θ
1d , . . . , P

−θ
Nd)

Gd(P−θ1d , . . . , P
−θ
Nd)

.

B Derivation of the Gains from Trade in (17)

Using the within-factor component in (12), calculate

ω
− 1−ρk

θ
kod Pod/Pd(∑N

o′=1 ωko′d(Po′d/Pd)
− θ

1−ρk

)− 1−ρk
θ

=

(
π∗kod∑N

o′=1 π
∗
ko′d

)− 1−ρk
θ

.

The denominator on the left-hand-side can be recovered from the between-factor compo-
nent in (12), (

N∑
o′=1

ωko′d (Po′d/Pd)
− θ

1−ρk

)− 1−ρk
θ

=

(
N∑
o′=1

π∗ko′d

)− 1
θ

.

Together, we have

ω
− 1−ρk

θ
kod Pod/Pd =

(
π∗kod∑N

o′=1 π
∗
ko′d

)− 1−ρk
θ
(

N∑
o′=1

π∗ko′d

)− 1
θ

.

Take this result to a power of −θ and sum across k to get

(Pod/Pd)
−θ =

K∑
k=1

(
π∗kod∑N

o′=1 π
∗
ko′d

)1−ρk ( N∑
o′=1

π∗ko′d

)
=

K∑
k=1

(π∗kod)
1−ρk

(
N∑
o′=1

π∗ko′d

)ρk
.
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The gains from trade relative to autarky are then

Wd/Pd

WA
d /P

A
d

=

(
K∑
k=1

(
π∗kdd
Xd

)1−ρk
(

N∑
o=1

π∗kod

)ρk)− 1
θ

= π
− 1
θ

dd

(
K∑
k=1

π∗kdd
πdd

(
N∑
o=1

π∗kod
π∗kdd

)ρk)− 1
θ

.

Further replacing π∗kod = πWkodπ
B
kd and π∗kdd = πWkddπ

B
kd, we get the expression in (17).

C Models in the GEV Class

C.1 Many Sectors

Assume that each country is composed of multiple sectors, s = 1, . . . , S, each composed of
a continuum of goods. As in Caliendo and Parro (2015), assume that productivity for good
v in sector s is a random draw distributed independent Fréchet within each sector across
origins, with sector-specific shape εs and scale Ãso. As in French (2016), further assume
that consumers in each destination d have CES preferences over sectoral aggregates with
elasticity θ̄ > 0. The sectoral composite good aggregates goods CES with elasticity ηs,
where ηs−1 > εs. Given trade costs τsod, the share of destination d’s expenditure on goods
from origin o and sector s is

πsod =

(
τsod

Wo
Aso

Psd

)−εs (
Psd
Pd

)−θ̄
, (C.1)

where Aso ≡ Ã1/εs
so , P−εssd ≡

∑N
o′=1

(
Aso′τso′d

W ′o
Aso′

)−εs
, and P−θ̄d ≡

∑
s P
−θ̄
sd .

This multi-sector model is isomorphic to a model where consumers have CES preferences
over a continuum of goods and productivity is correlated within each sector across origins,
as the sectoral gravity model presented in Section 4.1. Suppose that productivity for good
v in sector s is a random vector drawn from a multivariate max-stable Fréchet distribution
with scale parameter Tsod, shape θ, and sector-level correlation function

Gsd(x1, . . . , xN ) =

(
N∑
o=1

x1/(1−ρs)
o

)1−ρs

, (C.2)

where ρs measures the degree of correlation across origin countries in each sector. Sectoral
expenditure shares are

πsod =

(
T
−1/θ
sod Wo

Psd

)− θ
1−ρs (Psd

Pd

)−θ
, (C.3)

where P
− θ

1−ρs
sd ≡

∑N
o=1(T

−1/θ
sod Wo)

− θ
1−ρs , and P−θd =

∑
s P
−θ
sd . This import demand system

matches (C.1) for T 1/θ
sod = τsod/Aso, θ/(1 − ρs) = εs, and θ = θ̄. The first term on the right-

hand side of (C.3)—and (C.1)—-is expenditure within sector s and is CES with elasticity
θ/(1 − ρs) — εs in (C.1). The second term refers to between-sector expenditure and is
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also CES with elasticity θ — θ̄ in (C.1). If we further restrict θ → 0, the between-sector
expenditure share become a constant – this is the case of a between-sector Cobb-Douglas
aggregator.

Multi-sector model with input-output linkages. Assume that each sector s combines
domestic labor and a domestic aggregate input to produce sectoral tradable good v. The
production function is Cobb-Douglas with 1 − αso ∈ [0, 1] the labor share in sector s and
country o. The aggregate input used by sector s combines the composite sectoral good of
each sector according to

∏
s′M

αss′o
s′o , with

∑
s′ αss′o = αso. In turn, Mso is a CES aggregator

of the sectoral good v,

Mso = (

∫ 1

0
m

ηs−1
ηs

so (v)dv)
ηs
ηs−1 ,

with ηs > 1 and mso(v) denoting the amount of v used in the production of intermediate
goods in country o and sector s. Consumers in country d have CES preferences over the
composite sectoral good Csd, with elasticity of substitution θm > 0. Csd aggregates sectoral
goods according to a CES function with elasticity of substitution σms > 1.

The cost of the domestic input bundle in country o for sector s is given by

cso = AsW
1−αso
o

∏
s′

P
αss′o
s′o ,

with As > 0 and Ps′o the CES price index associated with the composite sectoral good.

Finally, productivity for good v produced in o by s to deliver to d is Zsod, and distributed
within each sector as an independent Fréchet with shape σms and scale Tmsod.

The sectoral expenditure shares are given by

πsod =
(Pmsod)

−σms∑N
o′=1(Pmso′d)

σms

[∑N
o′=1(Pmso′d)

−σms
] θ
σms

∑S
s′=1

[∑N
o′=1(Pmso′d)

−σm
s′
] θ
σm
s′

with Pmsod ≡ (Tmsod)
−1/θmcso.

(C.4)
Specializing (C.4) to the domestic pair, πsdd, and after some algebra, we get the expression
for the gains from trade in (35).

C.2 Mixed CES

Consider a mixed-CES demand system (such as in Adao et al., 2017):

πod =

∫
RM

∫ ∞
0

eβ
′GeoodW−σo∑M

o′=1 e
β′Geoo′dW−σo′

F (dσ,dβ)

where F is a cumulative distribution function on R+ × RM and Geood ∈ RM denotes a
vector of some bilateral variables (e.g. distance between the origin and destination, or
dummy variables that allow for random effects).

To derive this demand system from a Ricardian model with max-stable multivariate Fréchet
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productivity, we use a CNCES correlation function, as in (6), but let K →∞:

Gd(x1, . . . , xN ) =
∞∑
k=1

(
N∑
o=1

(ωkodxo)
1

1−ρk

)1−ρk

(C.5)

where for each o = 1, . . . , N we have ωkod ≥ 0 for each k = 1, 2, . . . and
∑∞

k=1 ωkod = 1.

Assume that productivity when delivering to d is distributed multivariate max-stable Fréchet
across origins with shape θ, scales of {Tod}No=1, and correlation function as in (C.5). The im-
plied demand system is

πod =
∞∑
k=1

(T ∗kodWo)
−σk∑N

o′=1(T ∗ko′dWo′)−σk

[∑N
o′=1(T ∗ko′dWo′)

−σk
] θ
σk

∑∞
k′=1

[∑N
o′=1(T ∗k′o′dWo′)−σk′

] θ
σk′

where σk ≡ θ/(1− ρk) and T ∗kod ≡ ωkodTod.

Next, we add some additional structure to T ∗kod and consider the limit as θ → 0. Assume
that there exists sequences of βk ∈ RM and µk ≥ 0 for k = 1, 2, . . . such that

∑∞
k=1 µk = 1

and T ∗kod = e−β
′
kGeood/σkµ

−1/θ
k . Then

πod =

∞∑
k=1

eβ
′
kGeoodW−σko∑N

o′=1 e
β′kGeoo′dW−σko′

[∑N
o′=1 e

β′kGeoo′dW−σko′

] θ
σk µk∑∞

k=1

[∑N
o′=1 e

β′
k′Geoo′dW

−σk′
o′

] θ
σk µk′

Letting θ → 0 we get

πod →
∞∑
k=1

eβ
′
kGeoodW−σko∑N

o′=1 e
β′kGeoo′dW−σko′

µk =

∫
RM

∫ ∞
0

eβ
′GeoodW−σo∑N

o′=1 e
β′Geoo′dW−σo′

P (dσ,dβ)

for

P (σ, β) ≡
∞∑
k=1

1{σ ≤ σk, β ≤ βk}µk

Note that since P is an empirical distribution function on R+ × RM , and it can arbitrarily
approximate F . As a consequence, this limiting case corresponds to a mixed-CES import
demand system.

D Data Construction

For our quantitative analysis, we use 4-digit SITC trade flow data and tariff data from the
United Nations COMTRADE Database. We also use trade flow data in aggregated sector
categories from the World Input-Output Database (WIOD). Gravity covariates are from
the Centre D’Études Prospectives et d’Informations Internationales (CEPII).
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D.1 Map from SITC Codes to WIOD Sectors

The WIOD data allow us to compute the total value of trade between a sample of 40 coun-
tries across 35 sectors from 1995 through 2011. While the sector classification in this dataset
comes from aggregating underlying data classified according to the third revision of the
International Standard Industrial Classification (ISIC), the COMTRADE tariff data are clas-
sified according to the second revision of the Standard International Trade Classification
(SITC). In order to merge these data sources, we construct a mapping that assigns SITC
codes to aggregates of WIOD sectors.

First, we match ISIC and SITC definitions using existing correspondences to Harmonized
System (HS) product definitions. These correspondences come from the World Bank’s
World Integrated Trade Solution (WITS).33 This merge matches 5,701 products out of 5,705
total HS products, creating a HS product dataset with 764 SITC codes and 35 ISIC codes.
Note that there are 925 SITC codes in the tariff data to be classified into WIOD sectors.

Next, we map the ISIC definitions in this merge to 25 aggregates of WIOD sectors. This
leaves products in the ISIC code 99 ("Goods n.e.c.") without a WIOD sector definition. This
results in a HS-product-level dataset with labels for the 25 WIOD aggregates and 764 SITC
codes.

At this point, there are two issues left to address: (1) classifying SITC codes that have
products in multiple WIOD sectors; and (2) classifying the SITC codes in the tariff data
that were either matched to ISIC code 99 or were not matched to any ISIC code. First,
we determine the most common WIOD sector classification (including "unclassified") at
the HS product level of each 4-digit SITC code within the merge. We re-classify all prod-
ucts within an 4-digit SITC sector as belonging to the most common WIOD sector, and
break ties manually. This step resolves issue (1) and leaves us with 764 4-digit SITC codes
mapped to a unique WIOD sector, and 161 4-digit SITC codes left unclassified. Second,
we resolve issue (2) by refining the map by using the most common classification of HS
products within each 3-digit SITC code, again breaking ties manually. In this step, we only
use the most-common classification at the 3 digit level to classify previously unclassified
4-digit SITC codes, filling in the map. This step mostly resolves issue (2), leaving only
12 4-digit SITC codes unclassified. We complete the map by manually classifying the 12
remaining codes.This results in a map from 925 4-digit SITC codes to 25 WIOD aggregates.

D.2 Reconciling WIOD and COMTRADE Data

We drop those countries in WIOD with completely missing data in COMTRADE, and ag-
gregate the 35 WIOD sectors to the 25 aggregates in our concordance with 4-digit SITC
codes, and restrict the sample to 1999 through 2007. These restrictions leave a balanced
sample of 25 WIOD aggregates for 31 countries over 9 years.34 Finally, we keep the 14
WIOD aggregates that correspond to traded goods. Table D.1 lists the sector and their
code.

33They are available at https://wits.worldbank.org/product_concordance.html.
34There exist three small negative values in this dataset, which all are instances of self trade for

certain sectors and are negligible share of total self-trade. We assume that output is incorrect and
replace these value with zero (effectively increasing output in that WIOD aggregate and country).
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Table D.1: WIOD sectoral categories, SGM elasticities, and sectoral expenditure.

Code Name Elasticity σj Self-Trade Share Expenditure Share

1 Agriculture, Hunting, Forestry and Fishing 4.15 (0.433) 0.91 0.075
2 Mining and Quarrying 4.37 (1.598) 0.69 0.057
3 Food, Beverages and Tobacco 2.21 (0.199) 0.87 0.108
4 Textiles and Leather 1.81 (0.510) 0.64 0.043
5 Wood and Products of Wood and Cork 1.13 (0.668) 0.85 0.017
6 Pulp, Paper, Paper , Printing and Publishing 1.25 (0.492) 0.86 0.048
7 Coke, Refined Petroleum and Nuclear Fuel 4.01 (1.569) 0.87 0.058
8 Chemicals, Rubber, and Plastics 2.40 (0.511) 0.69 0.125
9 Other Non-Metallic Mineral 0.66 (0.499) 0.88 0.030

10 Basic Metals and Fabricated Metal 3.26 (0.463) 0.80 0.124
11 Machinery, Nec 2.83 (0.683) 0.61 0.071
12 Electrical and Optical Equipment 5.17 (1.568) 0.51 0.108
13 Transport Equipment 2.36 (0.759) 0.61 0.106
14 Manufacturing, Nec; Recycling 2.20 (0.493) 0.54 0.026

Notes: SGM = sectoral gravity model. σj from estimating by PPML the specification in (28) corresponding
to column 2 of Table 1. Standard errors clustered at the sector-origin-destination level are in parenthesis. All
coefficients are significant at the 0.01 level. Self-trade share calculated as sectoral self-trade relative to total
expenditure in the sector. Expenditure share calculated as sectoral expenditure relative to total expenditure.

We then turn to the COMTRADE data. First, we drop all countries not in our WIOD sample
and drop a few instances of self-trade that only appear in a few countries. We then merge
the data with WIOD data, scaling units of both datasets to be in thousands of US dollars,
and adding missing observations to fill in all possible pairs of the 925 SITC codes, 31 origin
countries, 31 destination countries, and 9 years.

Next, we compare the WIOD aggregate level expenditure implied by the COMTRADE
data to the values coming from WIOD in order to infer missing values and zeros in the un-
derlying SITC-level expenditure data. On average, the two data sets match at the WIOD
aggregate level. However, there are some instances where WIOD aggregates are larger
than WIOD aggregates implied by COMTRADE, and some instances where they are smaller.
In the former case, we infer that there are true missing values in the COMTRADE data,
while in the later case we infer that the WIOD aggregates have missing underlying values
and the missing values in COMTRADE are actually zeros.

We adjust the data as follows. Conditional on having a zero in the corresponding WIOD
aggregate, 20.6 percent of SITC observations have a value in COMTRADE. The remaining
we infer to be true zeros rather than missing observations, so whenever the WIOD aggre-
gate is zero and a SITC value is missing, we set the SITC value to zero. Otherwise, we
assume that the WIOD data is incorrect and use the information in the COMTRADE data
to fill in the zeros in the WIOD. For observations where WIOD aggregates are positive, we
infer zeros and missing values in COMTRADE as follows. First, if the WIOD aggregate
value implied by COMTRADE is missing but the WIOD aggregate is positive, we treat all
the underlying SITC observations from COMTRADE as missing. Second, if the WIOD ag-
gregate is less than the WIOD aggregate implied by COMTRADE, we infer that the WIOD
data is incorrect, replace its value with the value implied by COMTRADE, and treat all the
SITC missing values underlying the aggregate as zeros. Finally, if the WIOD aggregate is
greater than the WIOD aggregate implied by COMTRADE, we infer that the discrepancy
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is due to missing values in COMTRADE. As such, we leave all missing SITC-level obser-
vations underlying the WIOD aggregate as true missing values. The resulting dataset has
23.3 percent inferred missing SITC values and 25.4 percent inferred zeros, and its WIOD
aggregates are always greater than or equal to the aggregate of the underlying SITC expen-
diture data. We observe no self-trade data in COMTRADE, so conditional on self trade, all
SITC values are missing. Among missing values, 13.9 percent are self trade observations.

D.3 Tariff Interpolation

Although our estimation can handle missing expenditure values at the SITC-level, it re-
quires a full sample of tariff observations. We use the tariff measure in COMTRADE which
is the minimum of tariffs across underlying products. 49.1 percent of these tariff values are
missing including missing values associated with self-trade observations (which make up
3.2 percent of the data). Among those that are missing, 47.2 percent also have a missing
value for expenditure, indicating that about half of the missing tariff data comes from no
COMTRADE observation. Among observations with a non-missing value for expenditure,
33.8 percent of tariffs are missing. We interpolate SITC tariff data as follows. First, we use
the minimum within each 4-digit SITC code (across origins within a destination-year) to
fill in missing values, which leaves 18.5 percent of observations missing. Second, we in-
terpolate using the minimum within each 3-digit SITC code (leaving 1.3 percent missing),
the minimum within each 2-digit SITC code (leaving 0.33 percent missing), and, finally,
the minimum within each 1-digit SITC code (leaving no missing values). Finally, we set
self-trade tariffs to zero.

D.4 WIOD Aggregate-Level Tariffs

To estimate the gravity equation in (28), we require WIOD sector-level tariff data. We
aggregate the COMTRADE tariff data to the WIOD aggregate sector level as follows. We
use our model-based aggregation procedure to compute the aggregate applied tariff and
total trade value in the COMTRADE data by SITC code, exporter, importer, and year. The
model implies that when latent factors correspond to WIOD sectors, the within-WIOD-
sector factor weights correspond to global expenditure shares. Then, up to a first order
approximation around zero tariffs, WIOD sector-level tariff indices are equal to a weighted
average of underlying 4-digit SITC tariffs using these global expenditure shares as weights.
We use these global expenditure weighted tariff averages for WIOD sector-level tariffs.

E Latent-Factor Model Estimation: Algorithm

We do not observe all sectors in (32). Additionally, we need to account for observed tariffs,
and simultaneously estimate of σk for k = 1, . . . ,K. The presence of missing data requires
to use an adjusted version of (33), which we describe in Section E.2. We solve this adjusted
problem using an extension of the multiplicative-update non-negative matrix factorization
(NMF) algorithm of Lee and Seung (1999, 2001) to accommodate covariates and missing
data, which we present in Section E.3.
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E.1 Identification Conditions For NMF

Here, we present sufficient conditions from the literature on identification of non-negative
matrix factorizations—see Fu et al. (2019) for a survey. Given a non-negative matrix Π ∈
RS×M+ , any pair of matrices (Λ,Φ∗) with Π = ΛΦ∗, Λ ∈ RS×K+ , and Φ∗ ∈ RK×M+ is a non-
negative matrix factorization (NMF). A NMF is identified if it is unique up to permutation
and scaling of the columns of Λ and the rows of Φ∗. That is, the matrices of any other
factorization can be written as ΛR−1 and RΦ∗ where R is the product of a permutation
matrix with a strictly positive diagonal matrix.

The intuition for identification of NMF is geometric. The rows of Λ (or columns of Φ∗),
viewed as points in the factor space, RK+ , must be “spread out” in some sense that makes
enough of the non-negativity constraints bind such that permutations are the only possible
rotations of the factorization (with scale typically pinned down through some normaliza-
tion). Intuitively if the non-negativity constraints are slack, then there might be a rotation
that keeps all the constraints slack. In which case, the factorization would not be identified.
This idea is analogous to the role of sign restrictions limiting rotations of latent structural
shocks in structural VARs (Faust, 1998; Uhlig, 2005; Fry and Pagan, 2011; Arias et al., 2018).

It is useful to conceptualize the geometry using the cone generated by Λ′, cone(Λ′) = {Λ′x |
x ∈ RS+}, which is the subset of RK+ consisting of positive linear combinations of the rows
of Λ. When this cone is large enough within RK+ , any rotation other than a permutation
will violate non-negativity.

The following result provides a stark example of this logic and has a clear economic inter-
pretation when the entries of Λ correspond to how each sector, s, loads on each factor, k.
In particular, it assumes that factors do not share sectors, forcing cone(Λ′) to entirely fill
the positive orthant.

Theorem E.1 (Ding et al. (2006)). If Λ is orthogonal so that Λ′Λ = I , then (Λ,Φ∗) is identified.

First, the diagonal of the orthogonality constraint normalizes the scale of each column of
Λ, removing the scale indeterminacy of the factorization. Second, the off-diagonal entries
force the columns of Λ to be mutually orthogonal. Since these columns have only non-
negative entries, there can never be an s such that λsk and λsk′ are both positive unless
k = k′, implying that each sector can only load on a single factor (although factors can
put weight on many sectors). In this case, sectors are partitioned into K groups which
correspond to the factors. That is, factors do not share sectors and the non-zero entries
of the columns of Λ contain the weights across sectors within each group. Indeed, this
type of restriction means that factors correspond to some aggregation of sectors—which is
precisely the assumption of a SGM model at that aggregated level. Under this economic
restriction, each row of Λ lies along an axis of RK+ —it is a scaled standard basis vector.
Geometrically, this means that the rows of Λ are maximally spread out in RK+ , implying
that cone(Λ′) = RK+ and only permutations preserve non-negativity.

Although this example clarifies the geometric intuition for why non-negativity constraints
can ensure identification, orthogonality of Λ is far from necessary. For instance, Donoho
and Stodden (2004) provide a much weaker sufficient condition, which in our context can
be interpreted as requiring that each factor is unique to at least one sector. In this case,
most sectors can be shared across factors (breaking the restriction of the SGM). However,
we still get the geometric result that cone(Λ′) = RK+ without requiring all rows of Λ to
correspond to scaled standard basis vectors.
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One possible issue with this weaker assumption is that we may want to allow every sector
to use multiple factors. Huang et al. (2014) provide a much weaker condition that allows
for this possibility. It is based on the following notion of the rows of Λ being “spread out”
in RK+ .

Definition 1 (Sufficiently Scattered). Λ ∈ RS×K+ is sufficiently scattered if:

1. C ≡ {x ∈ RK | x′1 ≥
√

(K − 1)x′x} ⊆ cone(Λ′).

2. cone(Λ′) ⊆ cone(R) does not hold for any orthonormal R except the permutation matrices.

To interpret the second-order cone, C, we can project it onto the unit simplex in RK+ . This
projection is the largest (K − 1 dimensional) sphere contained inside the simplex and it is
tangent to each facet of the simplex. (For the K = 3 case, this projection is a circle on the
simplex that is tangent to each side of the simplex.) If the rows of Λ (after projection onto
the simplex) all were inside of this sphere, then they could be arbitrarily rotated without
ever hitting the non-negativity constraints. However, if there are rows of Λ that lie outside
of C, not all rotations become possible as they will eventually hit the facets of RK+ . When
Λ is sufficiently scattered, the rows of Λ are spread out enough relative to C to rule out all
rotations except permutations. The first condition implies that there are faces of cone(Λ′)
that intersect the faces of RK+ (ruling our small rotations), while the second is a regularity
condition that means that cone(Λ′) is large enough to not simply tangentially contain C
(ruling out large rotations, other than permutations).

This concept leads to the following sufficient condition for identification.

Theorem E.2 (Huang et al. (2014)). If Λ and Φ∗
′ are sufficiently scattered, then (Λ,Φ∗) is iden-

tified.

If we view the rows of Λ (columns of Φ∗) as being drawn from some distribution with
full support on RK+ and a positive probability of zero entries (necessary for the facets of
cone(Λ′) to intersect the facets of RK+ ), then it becomes very likely that this sufficient con-
dition will hold as the number of rows (columns) get large. Indeed, Fu et al. (2019) use
numerical examples to show that we get identification with high probability as the di-
mensions of the data get large for fixed K. In our context, this essentially means that we
assume that Λ and Φ∗ contain zeros, and we use highly disaggregate sectoral data across
many countries. Intuitively, each additional sector and country-pair adds additional non-
negativity constraints, further restricting possible rotations in the low dimensional factor
space, RK+ .

E.2 Accounting for Missing Data

The WIOD expenditure data occasionally have more expenditure than the total expendi-
ture across SITC 4-digit sectors within that WIOD aggregate. To model expenditure com-
ing from sources other than those in the SITC 4-digit data, we include a synthetic sector
within each SITC 4-digit aggregate. When the SITC 4-digit data match the WIOD data,
there is no expenditure on this synthetic sector. We then have 773 4-digit sectors plus 14
WIOD synthetic sectors, where the former may be missing, and the latter are always ob-
served. In the following notation we do not differentiate between these sectors, so that
S = 773 + 14.
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Appending a t subscript to denote year, let Sjodt be the set of observed sectors for origin
o delivering to destination d at time t in WIOD aggregate j. We use data from WIOD to
construct residual expenditure on unobserved sectors, which is

Rjodt =
∑

s∈S\Sjodt

K∑
k=1

t−σksod λsk
φ∗kod
πod

,

where S = {1, . . . , S}.

Since the sum of Poisson variables is also Poisson with scale equal to the sum of underlying
scale parameters, we can write the objective function in terms of an observed component
and residual component,

L =
∑
jodt

 ∑
s∈Sjodt

`

(
πsod
πod

,
K∑
k=1

t−σksod λsk
φ∗kod
πod

)
+ `

Rjodt, ∑
s∈S\Sjodt

K∑
k=1

t−σksod λsk
φ∗kod
πod

 .
The algorithm in the following section provides a method to minimize this function.

E.3 NMF with Covariates and Missing Data

The extensions of the multiplicative-update non-negative matrix factorization (NMF) al-
gorithm of Lee and Seung (1999, 2001) do not change the properties of the algorithm.

The data are (Xit, Zit) where i = 1, . . . , N is a (potential) unit of observation, while t =
1, . . . , T indexes cross sections. We assume that Xit | Zit is a Poisson random variable with
scale

X̂it =
K∑
k=1

Z−σkit λikφ
∗
kt

for some unknown parameters {σk,Λk,Φ∗k}Kk=1, with Λk ≡ (λ1k, . . . , λNk)
′ and Φ∗k ≡ (φ∗1k, . . . , φ

∗
Tk)
′.

We assume that all values of Zit are observed, but for each t there are some (but not all)
values of Xit that are unobserved. However, we also observe some aggregates that are
representative of each full cross section. For each i, there is a j(i) such that in every t we
observe

X̄jt ≡
N∑
i=1

1{j(i) = j}Xit.

Although we do not observe all the data at the i-level, we indirectly observe them via these
aggregates.

Let It denote the observations in cross-section t, and define the component of each aggre-
gate that is attributable to missing data—the residual component of the aggregate—as

Rjt ≡ X̄jt −
∑
i∈It

1{j(i) = j}Xit =
∑
i 6∈It

1{j(i) = j}Xit.

Since the sum of Poisson random variables is Poisson with scale equal to the sum of the un-
derlying scales, we have that Rjt | X̂1t, . . . , X̂Nt is Poisson with scale R̂it =

∑
i 6∈It 1{j(i) =

j}X̂it.
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In this setup, each X̂it contributes to explaining the observed data through a unique observation—
either because Xit is observed directly, or because it is unobserved and shows up in the
residual of a unique j. Define the group of potential observations that i is aggregated with
as Iit = {i} if i ∈ It and Iit = {i′ ∈ It | j(i′) = j(i)} if i 6∈ It. Then, define

Yit ≡
∑
i′∈Iit

Xi′t =

{
Xit if i ∈ It
Rj(i)t if i 6∈ It

and Ŷit ≡
∑
i′∈Iit

X̂i′t.

It is useful to define the “filled in” N × T data matrix, Y, with entries [Y]it = Yit and a
prediction matrix Ŷ with entries [Ŷ]it = Ŷit. When there is no missing data, this prediction
matrix can be written as

Ŷ =
K∑
k=1

Z−σk � (ΛkΦ
∗
k′),

where Z is the matrix of explanatory variables, [Z]it = Zit. In the case without explanatory
variables, set σk = 0 for all k), and get

E[Y] = Ŷ = [Λ1 . . .Λk][Φ
∗
1 . . .Φ

∗
k]
′.

That is, we have a matrix-factorization problem. Because all the data and parameters are
non-negative, it is a non-negative matrix factorization problem. The present model gen-
eralizes this problem to incorporate missing data and explanatory variables with factor-
specific coefficients.

The Poisson deviance is

L =

T∑
t=1

∑
i∈It

`(Xit, X̂it) +

J∑
j=1

`

Rjt,∑
i 6∈It

1{j(i) = j}X̂it

 .
It is useful to re-write this expression as

L =
T∑
t=1

∑
i∈It

`(Xit, X̂it) +
∑
i 6∈It

`
(
Rj(i)t,

∑
i′ 6∈It 1{j(i

′) = j}X̂i′t

)
∑

i′ 6∈It 1{j(i′) = j}

 .
But then

L =

N∑
i=1

T∑
t=1

`(Yit, Ŷit)

Nit
, (E.1)

where Nit = 1 if i ∈ It and Nit =
∑N

i′=1 1{j(i′) = j(i)} if i 6∈ It. Recall that `(x, x̂) ≡
2(x ln(x/x̂) − (x − x̂)) = 2(x̂ − x ln x̂ + x lnx − x) so that ∂`(x, x̂)/∂x̂ = 2(1 − x/x̂). The
derivative in λi′k is then

∂L
∂λi′k

= 2

N∑
i=1

T∑
t=1

(
1− Yit

Ŷit

)
1{i′ ∈ Iit}Z−σki′t φkt

Nit
= 2

T∑
t=1

(
1− Yit

Ŷit

)
Z−σki′t φkt.

We can therefore write the gradient in Λk as

∂L
∂Λk

= 2Z−σkΦ∗k − 2

(
Y

Ŷ
� Z−σk

)
Φ∗k,
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where [Z]it = Zit and � denotes element-wise multiplication. The update multiplies the
existing value of Λk by the ratio of the negative component of the gradient to the positive
component,

Λk ← Λk �

(
Y
Ŷ
� Z−σk

)
Φ∗k

(Z−σk)Φ∗k
. (E.2)

Larger entries of Λk increase predicted values. When the current prediction is below the
observed value, this update increases Λk, thereby increasing the predicted values. Any
time we update Λk, we follow up by performing Φ∗k ← Φ∗k(1

′Λk), and Λk ← Λk/(1
′Λk),

where 1 denotes a vector of ones. This update has no effect on predictions and forces the
normalization

∑N
i=1 λik = 1.

Similarly, we get an updating rule for Φ∗k given by

Φ∗k ← Φ∗k �

(
Y
Ŷ
� Z−σk

)′
Λk

(Z−σk)′Λk
. (E.3)

Finally, the derivative in σk is

∂L
∂σk

= −2

N∑
i=1

T∑
t=1

(
1− Yit

Ŷit

) ∑
i′∈Iit

Z−σki′t λi′kφ
∗
kt lnZi′t

Nit

= −2

N∑
i=1

T∑
t=1

(
1− Yit

Ŷit

)
Z−σkit λikφ

∗
kt lnZit

= −21′
[
Z−σk � (ΛkΦ

∗
k′)� lnZ− Y

Ŷ
� Z−σk � (ΛkΦ

∗
k′)� lnZ

]
1.

The implied updating rule is

σk ← σk �
1′[Z−σk � (ΛkΦ

∗
k′)� lnZ]1

1′
[
Y
Ŷ
� Z−σk � (ΛkΦ

∗
k′)� lnZ

]
1
. (E.4)

Using the proof technique in Lee and Seung (2001), one can show that (E.1) is monoton-
ically decreasing in any of (E.2), (E.3), and (E.4). To estimate the model, we sequentially
iterate on these updating rules until convergence. With no guarantee of finding the global
optimum, we repeat the algorithm from many random starting values and use the version
with the lowest value of (E.1) as our estimate.

F Additional Results
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Table F.1: Elasticity estimates: LFM with different number of factors.

Number of factors K

1 2 3 4 5 6 7 8

σ1 3.003 3.933 3.300 4.814 3.929 7.866 5.175 9.944
σ2 2.767 2.638 3.342 3.780 3.536 4.868 5.471
σ3 1.592 2.614 3.573 2.559 4.624 4.417
σ4 1.223 0.806 0.804 1.481 3.435
σ5 0.418 0.574 0.670 1.884
σ6 0.163 0.390 1.594
σ7 0.375 0.111
σ8 0.108
θ = mink σk 3.003 2.767 1.592 1.223 0.418 0.163 0.375 0.108
Average σk 3.003 3.350 2.510 2.998 2.501 2.584 2.512 3.371

Notes: Estimates of factor-level elasticities, σk, for latent-factor models (LFM) with K = 1,. . . , 8. In
each case, F1 is the factor with the highest elasticity, while FK is the one with the lowest, with
θ = σK .

Figure F.1: Expenditure Elasticities, US market: LFM vs SGM.

(a) ε̂o,o′,USA, LFM (b) ε̂o,o′,USA, SGM

Notes: Estimates of expenditure elasticities εo,o′,USA calculated using (34) and estimates from the
latent-factor model (LFM) and sectoral gravity model (SGM). Year 2007.
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Table F.2: Gains From Trade: Models’ Comparison.

Country Name Country Code Domestic share Gains from Trade
CES SGM SGM + IO LFM

Australia AUS 0.73 1.28 1.15 1.21 1.74
Austria AUT 0.39 1.43 1.59 2.03 5.59
Belgium BEL 0.17 1.97 2.56 4.79 28.69
Bulgaria BGR 0.45 1.36 1.45 1.97 4.26
Brazil BRA 0.90 1.04 1.04 1.07 1.10
Canada CAN 0.53 1.28 1.34 1.56 3.48
China CHN 0.90 1.04 1.03 1.09 1.14
Czech Republic CZE 0.45 1.36 1.37 1.97 2.39
Germany DEU 0.55 1.26 1.29 1.50 1.86
Denmark DNK 0.38 1.45 1.62 1.98 6.29
Spain ESP 0.63 1.19 1.22 1.40 1.57
Finland FIN 0.57 1.24 1.26 1.48 3.27
France FRA 0.59 1.22 1.26 1.46 1.99
Great Britain GBR 0.52 1.29 1.32 1.48 1.98
Greece GRC 0.57 1.24 1.32 1.49 2.78
Hungary HUN 0.37 1.47 1.54 2.30 7.36
India IND 0.88 1.05 1.06 1.10 1.26
Ireland IRL 0.43 1.38 1.45 1.72 2.96
Italy ITA 0.71 1.14 1.15 1.26 1.26
Japan JPN 0.86 1.06 1.06 1.13 1.30
Korea KOR 0.78 1.10 1.10 1.27 1.36
Mexico MEX 0.64 1.19 1.20 1.36 1.81
Netherlands NLD 0.28 1.63 1.73 2.19 11.38
Poland POL 0.58 1.23 1.28 1.51 2.51
Portugal PRT 0.52 1.29 1.35 1.66 2.90
Russia RUS 0.77 1.11 1.14 1.23 1.57
Slovakia SVK 0.33 1.53 1.59 2.39 3.67
Slovenia SVN 0.31 1.57 1.96 — 5.08
Sweden SWE 0.50 1.31 1.34 1.57 2.53
Turkey TUR 0.76 1.11 1.15 1.25 1.50
United States USA 0.76 1.11 1.12 1.19 1.46

Notes: Gains from trade = Real wages in the observed equilibrium relative to autarky real wages.
Calculations using estimates from latent-factor model (LFM), sectoral gravity model (SGM), SGM
augmented by input-output links (SGM + IO), and CES model as in ACR (CES). Year 2007.
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Figure F.2: Tariff effects, densities.
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Table F.3: Tariff effects, moments.

%∆ Real Wage Elasticity: LFM vs SGM

Domestic 3rd Party Total

Mean -4.08 15.86 17.88
Std. 44.02 45.89 40.72
Skewness 0.54 0.33 7.39
25th Pctl. -38.72 -16.98 7.63
50th Pctl. -8.72 18.87 15.34
75th Pctl. 25.59 43.48 26.75
90th Pctl. 56.01 68.29 43.70

Notes: Figure F.2 shows density plots of the percent difference in the components of (36) between the
latent factor model (LFM) and sectoral gravity model (SGM). Blue corresponds to the domestic wage
effect, orange corresponds to the third party effect, and purple shows the full effect. The direct tariff
effect is identical between the two models. Table F.3 shows moments of these densities. Year 2007.
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G Alternative Estimation for the Parameter θ

The alternative estimation of the parameter θ exploits the structure of the import demand
system at the latent-factor level, and uses the estimates of those expenditure shares from
the LFM estimation procedure. We use a specification that relies on variation across factors
and inferred within-factor relative prices from the LFM estimates.

Summing over origins o in (25) yields the between-factor expenditure share

πBkdt =

[∑N
o′=1(t∗ko′dtWo′t/Ako′dt)

−σk
] θ
σk

∑K
k′=1

[∑N
o′=1(t∗k′o′dtWo′t/Ak′o′dt)−σk′

] θ
σk′

≡
(
P ∗kdt
P ∗dt

)−θ
, (G.1)

Multiplying and dividing by (P ∗kodt)
−θ with P ∗kodt ≡ t∗kodtWot/Akodt yields

πBkdt =

(
t∗kodtWot/Akodt

Pdt

)−θ (
πWko′dt

)− θ
σk ,

where πWkodt = (P ∗kodt/P
∗
kdt)
−σk .

We estimate the parameter θ from the coefficient on the tariff index t∗kodt in

πBkdt = exp
(
−θ ln t∗kodt +D1

kot +D2
dt +D3

kod − θ ln Ẑ∗kodt

)
ukodt, (G.2)

where Ẑ∗kodt ≡
(
π̂Wkodt

)−1/σ̂k , and Dl, for l = 1, 2, 3, are fixed effects. Identification comes
from controlling for within-factor expenditure using our LFM estimates. The identification
assumption is that the error term (e.g. unobserved component of trade costs) is orthogonal
to the latent-factor tariff index conditional on the other covariates. We estimate this equa-
tion by PPML. Results are gathered in columns 1-3 of Table G.1. The Wald test in the last
row indicates that estimates are statistically indistinguishable from our baseline estimate
of θ = 0.375.

The analogous procedure can be applied to estimating θ in the context of the sectoral grav-
ity model (SGM) in which factors are specific to sectors. In that case, an equation analogous
to (G.2) can be estimated using the observed sectoral data on expenditure and tariffs. Re-
sults are shown in columns 4-6 of Appendix Table G.1. These estimates are statistically the
same as our baseline estimate of θ.
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Table G.1: Alternative Estimates of the Parameter θ. PPML.

Dep. variable Between-factor πBkodt Dep. variable Between-sector πBjodt

(1) (2) (3) (4) (5) (6)
ln t∗kodt -1.168 -0.939* -0.935* ln tjodt -0.164 -0.310* -0.305*

(1.763) (0.416) (0.416) (0.373) (0.146) (0.144)
ln Ẑkodt Yes Yes No ln Ẑjodt Yes Yes No
k × ln Ẑkodt No No Yes j × ln Ẑjodt No No Yes
k × o× t Yes Yes Yes j × o× t Yes Yes Yes
d× t Yes Yes Yes d× t Yes Yes Yes
o× d Yes No No o× d Yes No No
k × o× d No Yes Yes j × o× d No Yes Yes

Observations 60,542 60,542 60,542 Observations 121,010 121,010 121,010
Degrees of freedom 57,347 58,307 58,301 Degrees of freedom 115,862 116,822 116,809
Deviance 1,632 122.3 122.2 Deviance 1,002 68.25 67.55
χ2 0.20 1.83 1.81 χ2 0.32 0.20 0.23
P-value 0.65 0.17 0.17 P-value 0.57 0.65 0.62

Notes: Estimates of (G.2). In columns 4-5, j = 1, . . . , 14 denotes WIOD aggregate sectors. Robust
standard errors in parenthesis, clustered by k × d (j × d), with levels of significance denoted by *** p <
0.001, and ** p < 0.01 and * p<0.05. Last row reports Wald test of the null hypothesis that estimates are
not significantly different from 0.375, the baseline LFM estimate of θ.
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