Abstract: The paper provides an analytic integrated assessment model of climate change (AIAM). Quantitatively, the model competes with its numeric deterministic counterparts used in policy advising. I employ the model for an economic evaluation of the major climate change uncertainties. Here, the analytic solution overcomes Bellman’s curse of dimensionality. I show the different welfare implications of “objective” uncertainty, epistemological uncertainty, and anticipated learning. The model shows how the interaction of “fat-tails”, discounting, risk aversion, and climatic non-linearities drive climate change assessment. I show that under certainty, the persistence of atmospheric carbon dioxide (carbon cycle) is the main amplifier of the carbon tax, whereas uncertainty mostly acts through the ocean-atmosphere temperature dynamics (climate system). Apart from deriving new insights, the analytic nature the model helps to convey assumptions and implications of integrated assessment modeling to a broad audience.

JEL Codes: Q54, H43, E13, D81, D90, D61

Keywords: climate change, integrated assessment, uncertainty, learning, risk aversion, recursive utility, social cost of carbon, carbon tax, carbon cycle, climate sensitivity

Correspondence: 207 Giannini Hall #3310, University of California, Berkeley, CA 94720-3310, E-mail: traeger@berkeley.edu
1 Introduction

Integrated assessment of climate change analyzes the interactions of long-term economic growth, greenhouse gas emissions, and global warming. The present analytic climate economy (ACE) is a quantitative model competing with numeric models used to derive the US federal social cost of carbon. Yet, the model is fully analytic and permits new insights into the evaluation of climate change, and it overcomes numeric obstacles in incorporating uncertainties. The reader can change contested parameters with pen and calculator (or the accompanying spreadsheet). Most importantly, the analytic nature of the present quantitative model attempts to reconnect the integrated assessment community publishing in field journals, the abstract climate thinkers publishing in general journals, and the broad economic audience. An increasing number of economists is interested in the biggest environmental problem of our generation, but hesitant to penetrate a world of complex numeric models that appear to be black boxes to the outsider.

Providing a general model, I choose the economic evaluation of the main scientific uncertainties surrounding climate change as the thread of the paper. Recent stylized and numeric models teach us that uncertainty surrounding climate change is as important for its evaluation as is expected climate change. Numeric stochastic integrated assessment models (IAMs) are on the rise and have delivered major insights over the recent years. Yet, Bellman’s curse of dimensionality continues to limit numerical analysis. This curse makes an analytic model like ACE particularly valuable as it can incorporate more of the relevant climatic and informational states than contemporaneous numeric IAMs. The most frequently discussed uncertainty in climate change economics is the climate’s sensitivity to atmospheric carbon dioxide concentrations. Climate science itself pays even more attention to the uncertainty governing atmospheric carbon build-up. Carbon dioxide does not decay, it only moves between reservoirs including the atmosphere, the oceans, and the biosphere (plants and soils). The precise carbon flows between these reservoirs are largely uncertain.

Economic models convey ideas and insights. Several results in this paper focus on the main drivers of climate policy and their interaction. Discount rates have long been assumed

1 These models solve the full non-linear system on a state space containing both economic and climate variables because the linearization around a steady state is generally unsatisfactory in a transitional world with many non-linear interactions. The present model’s solution suggests a promising approach also for reducing the numeric curse in related models that cannot be solved analytically. Note that these stochastic models are not to be confused with Monte-Carlo runs of deterministic models as they are employed in the federal social cost of carbon assessment. Stochastic models integrate uncertainty into the model and the decision maker’s objective. The Monte-Carlo approach of the IAM community samples different deterministic worlds, where the decision maker sees only one world at a time, and can be thought of as an average of sensitivity studies.

2 For example, an amount of carbon weighing more than the entire human race walking this planet vanishes every year from the atmospheric carbon budget into an unidentified sink. We do not know whether this carbon will continue to leave the atmosphere in a warming climate, whether its flow will stall, or whether it might return back into the atmosphere.
to be the main determinant of optimal climate policy, changing optimal climate policy targets much more than improved estimates of emissions, damages, or warming. Recently, Pindyck (2013) argued that uncertainty is the crucial characteristic of climate change that outweighs all other components and Weitzman (2009b) argues that fat-tailed temperature uncertainty makes the choice of time preference largely irrelevant, an argument countered by Roe & Bauman (2013) because of the major delay in climate response. I show that the welfare loss from uncertainty is even more sensitive to discounting than its deterministic contribution, i.e., the contribution from expected change. The sensitivity to nature’s uncertainty increases with the power of the distributional moments. Thus, fat tails increase the model’s sensitivity to discount rates instead of reducing it.

Uncertainties in climate change have always called the climate skeptics on the table, promoting a wait and see policy. Various studies demonstrate that learning is too slow to substantially affect the optimal carbon policy (Kelly & Kolstad 1999, Leach 2007, Jensen & Traeger 2013, Gerlagh & Liski 2014, Kelly & Tan 2015a). The present paper derives analytic insights into the roles and implications of a stochastic nature, of epistemological uncertainty (scientific lack of knowledge), and of anticipated learning. I show that nature’s stochasticity and epistemological uncertainty imply opposing sensitivities to time preference, and that knowledge updates make a Bayesian learning framework most sensitive to time preference because updates change the long-run picture of the future. Risk aversion interacts similarly with nature’s stochasticity and epistemological uncertainty. Higher moments of the uncertainty distribution are evaluated with higher powers of risk aversion. The relevant risk aversion is not Arrow Pratt’s measure of risk aversion, but by how much Arrow Pratt risk aversion exceeds the desire to smooth consumption over time (intrinsic aversion to risk).

Economic models guide discussions and help in quantifying policy targets. The discussion of the discount rate in the climate context is prominent for a good reason. It remains the most relevant determinant of the optimal carbon tax. It also remains the input over which economists are most divided. The analytic solution makes it easy to adjust parameters to reflect individual perspectives, and to translate philosophical differences or different calibration approaches into their quantitative policy implications. Ethical arguments as well as the long-run risk model’s calibration to asset prices leads to a low rate of pure time preference. These latter models, like ACE, disentangle risk aversion from consumption smoothing to calibrate the risk-free discount rate and risk premia separately. Models lacking this feature are forced to either discount the future too highly, or to play down the risk premia. ACE’s analytic nature permits an easy solution for low rates of pure time preference. In deterministic models, these low discount rates require very long time horizons beyond the common settings. In stochastic models, a low discount rate reduces the contraction of the Bellman equation and numerical issues frequently prevent a solution. The model also explains why the widespread belief (?) that the overall consumption discount rate (rather than pure time preference) matters for climate change evaluation is generally wrong.
ACE is the first IAM that splits up the carbon tax and welfare loss contributions between the carbon cycle’s and the climate system’s contributions. Under certainty, the carbon cycle is the main driver. The persistence of atmospheric carbon increases the optimal carbon tax by a factor of 3-30 (depending on pure time preference), as compared to a 15-40% reduction resulting from a combination of warming delay and temperature persistence. Under uncertainty, the relevance of the two components flips. Due to the non-linearities in the interactions, carbon flow uncertainty plays a minor role whereas temperature uncertainty raises the welfare loss of and carbon tax under a changing climate substantially. These findings have immediate implications for research priorities in the climate sciences.

Economic models guide research. Agreement on a single integrated assessment model is not on the horizon, and likely not desirable either. ACE is a valuable contribution to the set of models as it fleshes out assumptions of standard models and their implications. Some of these assumptions will be, should be, and have been challenged. Building and discussing new insights is easier with the transparency of an analytically tractable model. It can accompany numeric extensions with approximate interpretations of the changes. The analytic benchmark serves as a tool for insight, quick quantification, and as a platform to challenge ideas; and it can play the scapegoat, transparently representing common assumptions and, thereby, furthering new research directions.

1.1 ACE’s Relation to Other Analytic IAMs

Analytic approaches to the integrated assessment of climate change go back at least to Heal’s (1984) insightful (non-quantitative) contribution. A series of papers has used the linear quadratic model for a quantitative analytic discussion of climate policy (Hoel & Karp 2002, Karp & Zhang 2006, Karp & Zhang 2012). An advantage of the linear quadratic model is that welfare responds to uncertainty. In the wide-spread additive noise model, optimal policy remains unaffected by risk (weak certainty equivalence). In Hoel & Karp’s (2001) multiplicative noise model also the optimal policy responds to uncertainty. A disadvantage of the linear quadratic model is its highly stylized representation of the economy and the climate system. In particular, the model has no production or energy sector. Recently, Golosov et al. (2014) broke new ground by amending the log-utility and full depreciation version of Brock & Mirman’s (1972) stochastic growth model with with an energy sector and an impulse response to emissions that feeds back into production.

Golosov et al.’s (2014) elegant model makes use of two climate change characteristics. First, a decadal time step is neither uncommon in IAMs nor particularly problematic given the time scales of the climate change problem. Then, the full-depreciation assumption is much more reasonable than in other macroeconomic contexts. Second, planetary “heat-
ing” (radiative forcing) is logarithmic in atmospheric carbon and damages are convex in temperature. As a consequence, the authors argue for a linear relation between past emissions and present damages. Their argument assumes that temperature responds immediately to atmospheric carbon increase. However, reaching a new equilibrium temperature after increases in atmospheric carbon takes decades to centuries. Gerlagh & Liski (2012) extend the model by introducing the empirically important delay between emission accumulation and damages. Given the importance of non-linearities for uncertainty evaluation, the present paper has to follow the numeric IAMs used in policy advising and explicitly introduce the logarithmic relation between carbon dioxide’s radiative forcing and temperature change (Nordhaus 2008, Hope 2006, Anthoff & Tol 2014). Moreover, I incorporate a novel model of ocean-atmosphere temperature dynamics that competes well with these numeric policy models. As an additional payoff, ACE is the first analytic IAM to define and calibrate damages on temperature rather than on carbon.

Golosov et al.’s (2014) framework has been used to examine a multi-regional setting (Hassler & Krusell 2012), non-constant discounting (Gerlagh & Liski 2012, Iverson 2013), intergenerational games (Karp 2013), and regime shifts Gerlagh & Liski (2014). An economic feature of the Golosov et al. (2014) framework making it unattractive for the present analysis is its imposition of strong certainty equivalence: not even welfare responds to uncertainty. I show that this feature arises from simultaneously setting the intertemporal elasticity of substitution and Arrow Pratt risk aversion to unity. Whereas unity is within the estimated range of the intertemporal elasticity of substitution, Arrow Pratt risk aversion is ubiquitously estimated higher. I solve ACE for arbitrary degrees of (disentangled) Arrow Pratt risk aversion, accommodating for one of the most prominent criticisms of the model. Constant relative Arrow Pratt risk aversion implies a decreasing coefficient of absolute risk aversion. This stylized fact is widely believed to hold and contrasts with linear quadratic AIAMs that only capture increasing absolute Arrow Pratt risk aversion or risk neutrality. Alternatively, Li et al. (2014) and Anderson et al. (2014) leave the world of von Neumann & Morgenstern’s (1944) axioms and introduce a preference for robustness to escape the strong certainty equivalence of the Golosov et al. (2014) framework. The present paper breaks with both strong and weak certainty equivalence.

2 The Model

ACE’s structure follows that of most IAMs (Figure 1). Labor, capital, and technology create production that is either consumed or invested. Production relies on energy inputs which cause emissions. Emissions accumulate in the atmosphere, cause radiative forcing

4Anderson et al. (2014) deviate from Golosov et al. (2014) by using a linear relation between the economic growth rate, temperature increase, and cumulative historic emissions. Both Li et al. (2014) and Anderson et al. (2014) combine a simpler analytic model with a more complex numeric IAM for quantitative simulation.
Figure 1: The structure of ACE and most Integrated Assessment Models. Solid boxes characterize the model’s state variables, dashed boxes are flows, and dashed arrows mark choice variables.

(greenhouse effect), and increase global temperature(s), reducing production. This section introduces the basic model of the economy, the energy sector, and the climate system. It derives the necessary and sufficient assumptions to solve the model in closed form, discusses the underlying calibration, and introduces preferences that disentangle risk aversion from intertemporal consumption smoothing.

2.1 The Economy

Utility is logarithmic and the social planner’s time horizon is infinite. The logarithmic utility function captures only (deterministic) consumption smoothing over time. I assume a stable population normalized to unity, but the approach generalizes to a population weighted sum of logarithmic per capita consumption with population growth. Gross production is a Cobb-Douglas function of technology level $A_{0,t}$, capital K_t, the energy composite E_t, and the amount of labor $N_{0,t}$ employed in the final consumption good sector

$$Y_t = A_{0,t} K_t^{\kappa} N_{0,t}^{1-\kappa-\nu} E_t^\nu.$$

The aggregate energy input E_t is a smooth and monotonic function

$$E_t = g(E_t(A_t, N_t))$$

of $I \in \mathbb{N}$ different energy sources, whose production levels $E_{i,t}$ are collected in the vector $E_t \in \mathbb{R}_+^I$. These decomposed energy inputs are produced using technologies $A_t \in \mathbb{R}_+^I$ and labor input levels $N_t \in \mathbb{R}_+^I$. Total labor supply is normalized to unity, $\sum_{i=0}^I N_{0,t} = 1$. The first I^d energy sources are fossil fuel based and emit CO$_2$ (“dirty”). I measure these energy sources in units of their carbon content. Their extraction is costly, they are potentially scarce, and I denote this subset of energy inputs by the vector $E^d_t \in \mathbb{R}_+^{I^d}$. Total emissions
from production amount to $\sum_{i=1}^{I_d} E_{i,t}$. Renewable energy sources indexed $I_d + 1$ to I are costly but not scarce, and their production does not emit CO$_2$ (“clean”). I assume a system of energy sectors of the general form [1] that is sufficiently smooth and well-behaved to let the value function converge and to avoid boundary solutions.

The dirty fossil fuel energy sources are (potentially) scarce and their resource stock in the ground $R_t^d \in \mathbb{R}_+^{I_d}$ follows the equation of motion

$$R_{t+1}^d = R_t^d - E_{t}^d,$$

with initial stock levels $R_0^d \in \mathbb{R}_+^{I_d}$ and $R_t^d \geq 0$ at all times. The next section explains how the energy sector’s carbon emissions increase the global atmospheric temperature $T_{1,t}$ measured as the increase over the preindustrial temperature level. This temperature increase causes damages, which destroy a fraction $D_t(T_{1,t})$ of production, $D_t(0) = 0$. Proposition [1] characterizes the class of damage functions $D_t(T_{1,t})$ that permit an analytic solution of the model.

Following Golosov et al.’s (2014) assumption of full depreciation after one period, the capital stock’s equation of motion is

$$K_{t+1} = Y_t[1 - D_t(T_{1,t})] - C_t. \quad (2)$$

The model’s time step of 10 years makes the capital depreciation assumption more reasonable than it might appear: instead of an annual decay that leaves 30%-40% after 10 years, the model utilizes all of the capital during 10 years, and none afterwards. Appendix [A] extends the model to allow for more sophisticated capital persistence by interacting an exogenous capital growth rate approximation with rate of capital depreciation. This step enables ACE to match the empirical capital accumulation and it makes the social planner aware of the additional investment payoff from higher capital persistence. The extension does not affect the equations describing the optimal carbon tax or the welfare equations. The crucial implication of equation (2), and of the empirically better founded extension in Appendix [A] is that the investment rate will be independent of the system state. The investment rate is approximately independent of the climate states also in DICE (see Appendix [A]). The (remaining) channels for climate policy are the restructuring of the energy sector, investment levels, and a shift of labor allocation between the final good sector and the energy sectors.

2.2 The Climate System

The energy sector’s CO$_2$ emissions enter the atmosphere. We also emit (smaller quantities of) CO$_2$ through land conversion, forestry, and agriculture. Following the DICE model,
I treat these additional anthropogenic emission as exogenous and denote them by E_{t}^{exo}. Carbon released into the atmosphere does not decay, it only cycles through different carbon reservoirs. Let $M_{1,t}$ denote the atmospheric carbon content and $M_{2,t}, ..., M_{m,t}$, $m \in \mathbb{N}$, the carbon content of a finite number of non-atmospheric carbon reservoirs that exchange carbon. DICE uses two carbon reservoirs besides the atmosphere: $M_{2,t}$ captures the combined carbon content of the upper ocean and the biosphere (mostly plants and soil) and $M_{3,t}$ captures the carbon content of the deep ocean. Scientific climate models often use additional reservoirs. The vector M_t comprises the carbon content of the different reservoirs and the matrix Φ captures the transfer coefficients. Then

$$M_{t+1} = \Phi M_t + e_1(\sum_{i=1}^{I_d} E_{i,t} + E_{t}^{exo})$$

(3)

captures the carbon dynamics. The first unit vector e_1 channels new emissions from fossil fuel burning $\sum_{i=1}^{I_d} E_{i,t}$ and from land use change, forestry, and agriculture E_{t}^{exo} into the atmosphere $M_{1,t}$.

An increase in atmospheric carbon causes a change in our planet’s energy balance. In equilibrium, the planet radiates the same amount of energy out into space that it receives from the sun. Atmospheric carbon $M_{1,t}$ and other greenhouse gases (GHGs) “trap” some of this outgoing infrared radiation, which causes the (additional, anthropogenic) radiative forcing

$$F_t = \eta \frac{\log \frac{M_{1,t}+G_t}{M_{pre}}}{\log 2}.$$ (4)

The exogenous process G_t captures non-CO$_2$ greenhouse gas forcing measured in CO$_2$ equivalents. There is no anthropogenic radiative forcing if $G_t = 0$ and $M_{1,t}$ equals the preindustrial atmospheric CO$_2$ concentration M_{pre}. We can think of radiative forcing as a small flame turned on (or up) to heat a big pot of soup (our planet with its oceans). The parameter η captures the strength of this flame for a doubling of CO$_2$ with respect to the preindustrial concentration M_{pre}. Whereas radiative forcing is immediate, the planet’s temperature (the big pot of soup) reacts only with delay. After several centuries, the new equilibrium temperature caused by a new level of radiative forcing F_{new} will be $T_{eq}^{new} = \frac{s}{\eta} F_{new} = \frac{s}{\log 2} \log \frac{M_{eq}+G_{eq}}{M_{pre}}$.

The parameter s is known as climate sensitivity. It measures the medium to long-term temperature response to a doubling of preindustrial CO$_2$ concentrations. Its best estimates lie currently around 3C, but the true temperature response to a doubling of CO$_2$ is highly uncertain.

Next period’s atmospheric temperature depends on the current atmospheric temperature, the current temperature in the upper ocean, and on radiative forcing. Next period’s temperature in the upper ocean depends on current temperature in the adjacent layers: the

\[\text{The conventional climate equilibrium incorporates feedback processes that take several centuries, but excludes feedback processes that operate at even longer time scales, e.g., the full response of the ice sheets.}\]
atmosphere and the next lower ocean layer. I denote the temperature of a finite number of ocean layers by $T_{i,t}, i \in \{2, ..., l\}, l \in \mathbb{N}$. I abbreviate the atmospheric equilibrium temperature resulting from the radiative forcing level F_t by $T_{0,t} = \frac{\eta}{\tau}F_t$. A given ocean layer slowly adjusts its own temperature to the temperature of the surrounding layers. I model next period’s temperature in layer $i \in \{1, ..., l\}$ as a generalized mean of its present temperature $T_{i,t}$ and the present temperatures in the adjacent layers $T_{i-1,t}$ and $T_{i+1,t}$.

A generalized mean is an arithmetic mean enriched by a non-linear weighting function f. It takes the form $M_i(T_{i-1,t}, T_{i,t}, T_{i+1,t}) = f^{-1}[\sigma_{i,i-1}f(T_{i-1,t}) + \sigma_{i,i}f(T_{i,t}) + \sigma_{i,i+1}f(T_{i+1,t})]$ with weight $\sigma_{i,i} = 1 - \sigma_{i,i-1} - \sigma_{i,i+1} > 0$. The weight $\sigma_{i,j}$ characterizes the (generalized) heat flow coefficient from layer j to layer i. Heat flow between any two non-adjacent layers is zero. Note that the weight $\sigma_{i,i}$ captures the warming persistence (or inertia) in ocean layer i. The weight $\sigma_{1,0} = \sigma_{\text{forc}}$ determines the heat influx caused by radiative forcing. I define $\sigma_{l,l+1} = 0$: the lowest ocean layer exchanges heat only with the next upper layer.

I collect all weights in the $l \times l$ matrix σ, which characterizes the heat exchange between the atmosphere and the different ocean layers.

Next period’s temperature in layer i is the generalized mean of its own and the adjacent present period temperatures

$$T_{i,t+1} = M_i(T_{i,t}, w_{i-1}T_{i-1,t}, w_{i+1}T_{i+1,t}) \text{ for } i \in \{1, ..., l\}. \quad (5)$$

The equilibrium temperature ratios $w_i = \frac{T_{i-1,\text{eq}}}{T_{i,\text{eq}}}$ are empirical adjustments reflecting that the equilibrium warming does not coincide across all layers: in a warmer equilibrium the oceans lose more energy through evaporation, keeping them cooler relative to the atmosphere. Based on the data, my empirical calibration in section 2.4 adjusts only for the equilibrium warming difference between atmosphere and oceans ($w_i = 1$ for $i \neq 2$). Proposition 1 in the next section characterizes the class of means (weighting functions f) that permit an analytic solution.

2.3 Solving ACE

Appendix B solves ACE by transforming it into an equivalent linear-in-state model (Karp 2013). This transformation helps to understand which extensions maintain (or destroy) its analytic tractability. Linear-in-state models rely on equations of motion that are linear in the state variable, and on control variables that are additively separable from the states. ACE is linear only after transforming some of the original state variables. The policymaker optimizes labor inputs, consumption, and investment to maximize the infinite stream of logarithmic utility from consumption, discounted at factor β, over the infinite time horizon. The present paper assumes that the optimal labor allocation has an interior solution and

\footnote{For notational convenience equation (5) below writes a mean of three temperature values also for the deepest layer ($i = l$) with a zero weight on the arbitrary entry T_{l+1}.}
that scarce resources are stretched over the infinite time horizon along the optimal path, avoiding boundary value complications. Linear-in-state models are solved by an affine value function. The following proposition summarizes the main result of Appendix B.

Proposition 1 An affine value function of the form

\[
V(k_t, \tau_t, M_t, R_t, t) = \varphi_k k_t + \varphi_M^\top M_t + \varphi_\tau^\top \tau_t + \varphi_{R_t}^\top R_t + \varphi_t
\]

solves ACE if, and only if, \(k_t = \log K_t \), \(\tau_t \) is a vector composed of the generalized temperatures \(\tau_{i,t} = \exp(\xi_i T_{i,t}) \), \(i \in \{1, ..., L\} \), the damage function takes the form

\[
D(T_{1,t}) = 1 - \exp[-\xi_0 \exp[\xi_1 T_{1,t}]] + \xi_0, \ \xi_0 \in \mathbb{R},
\]

the mean in the equation of motion (5) for temperature layer \(i \in \{1, ..., l\} \) takes the form

\[
\mathcal{M}_i^\sigma(T_{i,t}, w_i^{-1}T_{i-1,t}, w_{i+1}T_{i+1,t}) = \frac{1}{\xi_i} \log \left((1 - \sigma_{i,i-1} - \sigma_{i,i+1}) \exp[\xi_i T_{i,t}] + \sigma_{i,i-1} \exp[\xi_i w_i^{-1}T_{i-1,t}] + \sigma_{i,i+1} \exp[\xi_i w_{i+1}T_{i+1,t}] \right), \quad (6)
\]

and the parameters \(\xi_i \) take the values \(\xi_1 = \log2 \approx \frac{1}{4} \) and \(\xi_{i+1} = w_{i+1} \xi_i \) for \(i \in \{1, ..., l-1\} \) (with \(w_i, i \in \{1, ..., l-1\} \), given).

The coefficients \(\varphi \) in the value function are the shadow values of the respective state variables, and \(\top \) denotes the transpose of a vector of shadow values. The coefficient vector on the resource stock, \(\varphi_{R_t}^\top \), has to be time-dependent: the shadow values of the exhaustible resources increases over time following the endogenously derived Hotelling rule. The process \(\varphi_t \) captures the value contribution of the exogenous processes, including technological progress. The damage function is of a double-exponential form with a free parameter \(\xi_0 \), which scales the severity of damages at a given temperature level. The damage parameter \(\xi_0 \) is the semi-elasticity of net production with respect to a change of transformed atmospheric temperature \(\tau_{1,t} = \exp(\xi_1 T_{1,t}) \). The generalized mean \(\mathcal{M}_i^\sigma \) uses the non-linear weighting function \(\exp[\xi_i \cdot] \). Section 2.4 shows that these assumptions match the actual climate dynamics and current assumptions about economic damages. It calibrates the weight matrix \(\sigma \), the atmosphere-ocean equilibrium temperature difference \(w_1 \), and the damage parameter \(\xi_0 \).

Expressed in terms of the vector of transformed temperature states \(\tau \), the temperatures’ equations of motion (6) take the linear form

\[
\tau_{t+1} = \sigma \tau_t + \sigma_{\text{forc}} M_{t+1} + G_t M_{\text{pre}}^{-1} e_1.
\]

(7)

The parameter \(\sigma_{\text{forc}} \) is the weight on radiative forcing in the atmospheric temperature’s equation of motion. It determines the speed of the (initial) response of atmospheric temperature to the greenhouse effect. To achieve additive separability between controls and states,
the consumption rate \(x_t = \frac{C_t}{Y_t} \) replaces absolute consumption as the consumption-investment control. Under the assumptions of Proposition 1, the optimal consumption rate is

\[
x^*_t = 1 - \beta \kappa .
\]

(8)

Society consumes less the higher the discounted shadow value of capital \((x^*_t = \frac{1}{1 + \beta \phi} \) with \(\phi = \frac{\kappa}{1 - \beta \kappa} \)), resulting in a consumption rate that decreases in the capital share of output \(\kappa \).

The other controls depend on the precise form of the energy sector.

2.4 Calibration

I employ the carbon cycle of DICE 2013. Running the model in a 10 year time step, I double the original 5 year transition coefficients. Figure 4 in section 6.1 confirms that the rescaled 10 year transition matrix implies an evolution of the carbon stock that is indistinguishable from that of the original 5 year step of DICE 2013. I employ the usual capital share \(\kappa = 0.3 \) and use the International Monetary Fund’s (IMF) 2015 investment rate forecast \(1 - x^* = 25\% \) to calibrate pure time preference. Equation (8) implies \(\beta = \frac{1 - x^*}{\kappa} = 0.25 \) and an annualized rate of pure time preference of \(\rho = \frac{1}{10} \log \beta = 1.75\% \). The conversion of utility values into 2015 USD relies on the log utility’s implication that \(dc = C du = xY du \), where the consumption rate is \(x = 75\% \) and \(Y \) is equal to ten (time step) times the IMF’s global economic output forecast of \(Y_{2015} = 81.5 \) trillion USD.

Economic damage functions are crucial and yet hard to determine. The most widespread IAM DICE uses the form \(D(T) = \frac{1}{1 + 0.0028T^2} \). Nordhaus (2008) calibrates the coefficient 0.0028 based on a damage survey for a 2.5°C warming. I calibrate ACE’s damage coefficient to match Nordhaus’ calibration points of 0 and 2.5°C exactly, delivering the damage semi-elasticity \(\xi_0 = 0.0222 \). Figure 2 compares the resulting damage curve to that of the DICE-2007 model. The figure also depicts the damage curve \(D(T) = 1 - 1/((1 + \frac{T}{20.40})^2 + (\frac{T}{5.081})^{0.754}) \) suggested by Weitzman (2010), who argues that little is known about damages at higher temperature levels, and that a more convex damage curve passing through Nordhaus’ calibration point at 2.5°C is just as likely. ACE’s damage function initially generates damages that are slightly higher than in DICE-2007 and matches them exactly at 2.5°C. For higher temperatures up to a 12°C warming, my base case calibration delivers slightly lower damages compared to DICE, and it generates higher damages for global warming above 12°C, warming levels that imply a hard-to-conceive change of life on the planet. Figure 2 also depicts two dashed variations of ACE’s damage function. The lower curve reduces the damage parameter by 50%, resulting in a damage function that lies almost everywhere below DICE. The higher curve increases the damage parameter by 50%, resulting in a damage function that lies everywhere above that of DICE. Section 3 discusses how such changes affect welfare and the optimal carbon tax.
Figure 2: ACE’s damage function compared to that of DICE-2007 and a highly convex damage function suggested by Weitzman (2010). All three lines coincide for a 2.5°C warming, the common calibration point based on Nordhaus (2008). The dashed curves depict ACE’s damage function for a ±50% variation of the base case damage coefficient $\xi_0 \approx 0.022$.

The calibration of temperature dynamics (equation 6) uses the emission scenarios of the recent assessment report by the Intergovernmental Panel on Climate Change IPCC (2013). These so-called Representative Concentration Pathways (RCP) replace the (SRES-) scenarios of the earlier assessment reports (Moss et al. 2007). They are labeled by the approximate radiative forcing levels they produce by the end of the century (measured in W/m2). These new RCP scenarios are defined for longer time horizons and, thus, better suited for calibration than the earlier SRES scenarios. I use the Magicc6.0 model by Meinshausen et al. (2011) to simulate the RCP scenarios over a time horizon of 500 years. The model emulates the results of the large atmosphere-ocean general circulation models (AOGCMs) and is employed in the IPCC’s assessment report. DICE was calibrated to one of the old SRES scenarios using an earlier version of Magicc. My calibration of ACE uses three ocean layers (upper, middle, and deep) compared to Magicc’s 50 and DICE’s single ocean layer(s).

Figure 3 shows the calibration results. The solid lines represent Magicc’s response to the radiative forcing of the RCP scenarios (benchmark), whereas the dashed lines represent ACE’s atmospheric temperature response. In addition to the original RCP scenarios, I include two scenarios available in Magicc6.0 that initially follow a higher radiative forcing scenario and then switch over to a lower scenario (RCP 4.5 to 3 and RCP6 to 4.5). These scenarios would be particularly hard to fit in a model tracing only atmospheric temperature. The ability to fit temperature dynamics across a peak is important for optimal policy analysis. ACE’s temperature model does an excellent job in reproducing Magicc’s temperature response for the scenarios up to a radiative forcing of 6W/m2. It performs slightly worse for the high business as usual scenario RCP8.5, but still well compared to other IAMs.
3 Results from the Deterministic Model

The social cost of carbon (SCC) is the money-measured present value welfare loss from an additional ton of CO\textsubscript{2} in the atmosphere. The economy in section 2.1 decentralizes in the usual way and the Pigovian carbon tax is the SCC along the optional trajectory of the economy. In the present model, the SCC is independent of the future path of the economy and, thus, this unique SCC is the optimal carbon tax. The present section discusses the interpretation and quantification of its closed-form solution. It explores the social cost of global warming and the social benefits of carbon sequestration. A proposition establishes that mass conservation in the carbon cycle makes the SCC highly sensitive to pure time preference (and not to the consumption discount rate in general).

3.1 The Price of Atmospheric Carbon

Appendix B solves for the shadow values and derives the following result on optimal carbon dioxide taxation.

Proposition 2 Under the assumptions of section 2.1 (economy) and section 2.2 (climate...
system) the SCC in money-measured consumption equivalents (USD 2015) is

\[
SCC_t = \frac{\beta Y_t}{M_{\text{pre}}} \cdot \left[\left(1 - \beta \Phi\right)^{-1}\right]_{1,1} \cdot \left[\left(1 - \beta \Phi\right)^{-1}\right]_{1,1} = 56.5 \, \$/tC
\]

where \([·]_{1,1}\) denotes the first element of the inverted matrix in squared brackets, and the numbers rely on the calibration discussed in section 2.4.

As emphasized by Golosov et al. (2014), the SCC is proportional to production \(Y_t\) and increases over time at the rate of economic growth. In the present formula, the ratio of production to pre-industrial carbon concentrations \(M_{\text{pre}}\) sets the units of the carbon tax. The discount factor \(\beta\) reflects a one period delay between temperature increase and production impact. The damage parameter \(\xi_0\) represents the constant semi-elasticity of net production to a transformed temperature increase, i.e., to an increase of \(\tau_1 = \exp(\xi_1 T_1)\). These terms together would imply a carbon tax of 25.5$ per ton of carbon.

The subsequent terms paint a detailed picture of the climate dynamics. Appendix C provides a simple illustrations for a two layer carbon cycle and atmosphere-ocean temperature system. A von Neumann series expansion of the (bounded operator) \(\beta \Phi\) helps to interpret the general term \([\left(1 - \beta \Phi\right)^{-1}]_{1,1}\) governing carbon cycle dynamics

\[
(1 - \beta \Phi)^{-1} = \sum_{i=0}^{\infty} \beta^i \Phi^i.
\]

The element \([\Phi^i]_{1,1}\) of the transition matrix characterizes how much of the carbon injected into the atmosphere in the present remains in or returns to the atmospheric layer in period \(i\), after cycling through the different carbon reservoirs. E.g., \([\Phi^2]_{1,1} = \sum_j \Phi_{1,j} \Phi_{j,1}\) states the fraction of carbon leaving the atmosphere for layers \(j \in \{1, ..., m\}\) in the first time step and arriving back to the atmosphere in the second time step. In summary, the term \([\left(1 - \beta \Phi\right)^{-1}]_{1,1}\) characterizes in closed form the discounted sum of CO\(_2\) persisting in and returning to the atmosphere in all future periods. The discount factor accounts for the delay between the act of emitting CO\(_2\) and the resulting temperature forcing over the course of time. Quantitatively, the persistence of carbon increases the earlier value of 25.5$\$/tC by a factor of 3.7. The resulting carbon tax would be 95$\$/tC when ignoring warming delay and the temperature’s atmosphere-ocean interaction.

The terms \([\left(1 - \beta \sigma\right)^{-1}]_{1,1} \cdot \sigma_{\text{forc}}\) capture the atmosphere-ocean temperature delay dynamics. Analogously to the interpretation in the case of carbon, the expression \([\left(1 - \beta \sigma\right)^{-1}]_{1,1}\) characterizes the generalized heat flow that enters, stays, and returns to the atmospheric layer. Note that the simple closed-form expression for the carbon tax in equation (9) captures an infinite double-sum: an additional ton of carbon emissions today causes radiative forcing in all future periods, and the resulting radiative forcing in any given period causes warming
in all subsequent periods. The parameter σ_{forc} captures the speed at which atmospheric temperature responds to radiative forcing. The response delay, around 0.4, significantly reduces the SCC. However, at the same time, the ocean implied temperature persistence increases the SCC by a factor of 1.4. Together, the ocean-atmosphere temperature dynamics reduce the carbon tax by a factor of 0.6 resulting in the value of 56.5 USD per ton of carbon.

Expressed in tons of CO$_2$, this SCC is 15.5 USD, coinciding up to one dollar to the DICE-2007 carbon tax for 2015. At the gas pump, the SCC translates into 14 cent per gallon or 4 cent per liter. The (dashed) variation of the damage function in Figure 2 implies a $\pm 50\%$ variation of the semi-elasticity ξ_0 and, thus, the SCC. Ignoring the transitory atmosphere-ocean temperature dynamics calibrated in Figure 3 would overestimate the carbon tax by 70%. Ignoring carbon persistence would result in a carbon tax that is only 27% of its actual value.

The earlier models of Golosov et al. (2014) and Gerlagh & Liski (2012) use a carbon decay model mostly equivalent to the carbon cycles commonly employed in IAMs and adopted in ACE. The social cost of carbon in these papers contains a summation term that similarly translates carbon persistence into a multiplier of an output loss based contribution. These models do not explicitly incorporate radiative forcing, temperature dynamics, and damages as a function of temperature. However, Gerlagh & Liski (2012) introduce a reduced form damage delay component that gets at the delay between peak emissions and peak damages. This delay multiplier contributes a factor of 0.45 in their closest scenario (“Nordhaus”), which cuts the tax a little more than ACE’s factor of $1.4 \cdot 0.42 \approx 0.6$ based on an explicit model of temperature dynamics.

Embedded in equation (9) is the social cost of a marginal temperature increase (SCT) in degree Celsius

$$SCT_i(T_{1,t}) = Y_t \xi_0 \left[(1 - \beta \sigma)^{-1} \right]_{1,1} \xi_1 \exp(\xi_1 T_{1,t}).$$

The cost of a marginal temperature increase in degree Celsius depends on the prevailing temperature level, unlike the SCC and the transformed temperature state’s shadow value. This level-dependence reflects the convexity of damages in temperature. Integrating the shadow value of a temperature increase from pre-industrial to present temperature levels yields the present value welfare cost of the present-day temperature increase

$$\Delta W_{USD}^{Temp}{2015}(T_1 \approx 0.77C) = Y_t \xi_0 \left[(1 - \beta \sigma)^{-1} \right]_{1,1} (\exp(\xi_1 T_1) - 1) \approx 5 trillion,$$

or 6% of world output. This value takes into account atmospheric temperature dynamics and the persistence of the global warming. It characterizes the actual cost of having warmed

8DICE expresses the carbon tax in 2015 in USD of 2005, which have to be translated into 2015 USD for the comparison.
the planet to present temperature levels, which is larger than the annual damage from a
given temperature increase, but smaller than the discounted present value of a perpetual
temperature increase. The cost does not include that we have already warmed the oceans
as well and that the warming is caused by persistent CO₂ emissions that will keep radiative
forcing above the pre-industrial level.

The social cost of the present atmospheric CO₂ increase is

\[\Delta W_{CO₂}^{USD\,2015}(M_1 \approx 397ppm) = SCC (M_1 - M_{pre}) \approx \$14 \text{ trillion}, \]

or 17% of world output. This number reflects the damage already in the pipeline from
present atmospheric CO₂. It does not include the CO₂ increase in the oceans or the non-
CO₂ greenhouse gases, and the damage is additional to the above cited social cost of the
temperature increase that already took place. These numbers illustrate that the welfare cost
expected from the present CO₂’s future temperature forcing is significantly higher than the
cost of having already heated the planet.

A much discussed geoengineering “solution” to climate change sequesters carbon into the
oceans. Engineers are currently exploring mechanisms to extract CO₂ from the exhaustion
pipes of coal power plants, planning to pump it into the deep ocean. The gain from such
a geoengineering solution is merely the difference between the shadow values of carbon in
the different reservoirs. This difference \(\varphi_{M,i} - \varphi_{M,1} \) will reappear in the expressions for the
welfare loss from carbon flow uncertainty. Appendix B.3 states the closed-form expression for
the benefits of pumping a ton of CO₂ into layer \(i \), instead of emitting it into the atmosphere.
Appendix C.3 discusses and illustrates the relation between the price of carbon in the different
reservoirs. ACE evaluates the welfare gain from pumping a ton of carbon into the upper
ocean layer to \(57 - 16 = 41 \) USD, and to almost the full 57 USD when pumping the carbon
into the deep ocean (ACE does not have an explicit damage function for ocean acidification).

3.2 The Optimal Carbon Tax: A Declaration of Independence

In general, the optimal carbon tax is the SCC along the optimal emission trajectory. The
SCC in equation 9 is independent of the absolute stock of carbon in the atmosphere. In
consequence, the SCC in ACE is independent of the future emission trajectory, and the SCC
directly specifies the optimal carbon tax. This finding already prevails in Golosov et al.
(2014). While convenient, it raises a certain degree of discomfort: our optimal effort to
reduce a ton of carbon is independent of whether we are in a world of high or low carbon
concentrations, and independent of whether we are in a world of high or low prevailing
temperatures. This discomfort only increases when we learn that a fraction of any emitted

9Ocean pumping is just one of the strategies considered. Note that CO₂, thanks to its reaction with oxygen, only partially fits back into an oil well. Biochar production corresponds to an injection into soil and the biosphere.
ton of carbon stays in the atmosphere for at least thousands of years. A common argument governing climate change action is: if we delay mitigation today, we have to do even more tomorrow. The model tells us: if we delay policy today, we have to live with the consequences, but we do not have to compensate in our future mitigation effort.

The common conception that we have to mitigate more at higher levels of atmospheric CO$_2$ is based on the convexity of damages in global temperature increase. Figure 2 shows that ACE has such a convex damage function, yet, optimal mitigation does not increase in the prevailing CO$_2$ concentration. The reason lies in the radiative forcing equation (4): the higher the CO$_2$ concentration, the less does an additional ton of emissions contribute to further forcing and, thus, warming. The precise physics of the underlying logarithm is slightly more complicated, but a simple intuition is as follows. CO$_2$ traps (absorbs) a certain spectrum of the wavelength that our planet radiates out into space, thereby warming the planet. If there is already a high concentration of CO$_2$ in the atmosphere, most of the energy leaving the planet in this wavelength is already trapped. As a consequence, an additional unit of CO$_2$ emissions has a much lower warming impact than the first unit of anthropogenic emissions. ACE models explicitly the implicit assumptions of Golosov et al. (2014) and Gerlagh & Liski (2012) that the convexity of the damage curve and the concavity of the radiative forcing equation partially offset each other. In contrast to the earlier papers, ACE directly employs the carbon cycle of one of the most widely used integrated assessment models, explicitly uses the physical radiative forcing equation, and matches the forcing induced temperature dynamics better than most integrated assessment models. I conclude that the finding might be surprising at first sight, but it is not unreasonable.

In addition, the optimal mitigation policy does not depend on the prevailing temperature level, despite higher temperatures causing higher marginal damages. The reason is that the long-term equilibrium temperature is determined entirely by the GHG concentrations, and a higher temperature level at a given CO$_2$ concentration implies less warming in the future. ACE shows that this finding prevails in a model that nicely replicates the temperature dynamics of state of the art climate models (Figure 3). These findings connect immediately to the debate on the slope of the marginal damage curve in the “taxes versus quantities” literature (Weitzman 1974, Hoel & Karp 2002, Newell & Pizer 2003). ACE states that the marginal social damage curve for CO$_2$ emissions is flat. In consequence, taxes not only minimize the welfare cost under technological uncertainty and asymmetric information compared to a cap and trade system, but they even eliminate these welfare costs. The marginal damage curve would gain a non-trivial slope if the model was to depart from the assumption of an intertemporal elasticity of substitution of unity. Deterministic estimates usually suggest values smaller than unity. However, the long-run risk literature forcefully argues for an intertemporal elasticity of substitution larger than unity (and disentangled from risk attitude). The logarithmic middle ground stays a reasonable compromise. In particular, it is just as easy to argue for a slightly falling marginal damage curve as it is to argue for a
slightly increasing marginal damage curve. The result is convenient for the policy maker: set the emission price and let the market take the quantity response. The result is also convenient for the economist: optimal mitigation policy does not require knowledge of the mitigation technology frontier.

3.3 Discounting and Mass Conservation

Optimal economic policy implies that we have to live with the consequences of historic overindulgence in carbon because our mitigation effort is independent of past emissions. What makes it worse: carbon does not decay. Carbon only cycles through the different reservoirs; the fact that some of it eventually turns into limestone is negligible for human planning horizons. A model comparison of scientific carbon cycle models found that on average 18% of a 100Gt carbon emission pulse, approximately 10 years of present CO$_2$ emissions, still remain in the atmosphere after 3000 years (Joos et al. 2013). In DICE 2013’s carbon cycle adopted here, 6% of an anthropogenic emission unit stays in the atmosphere forever.

This implication of mass conservation of carbon has an important impact on the optimal carbon tax.

Proposition 3 A carbon cycle (equation 3) satisfying mass conservation of carbon implies a factor $(1 - \beta)^{-1}$, approximately proportional to $\frac{1}{\rho}$, in the closed-form solution of the SCC (equation 7).

In particular, the SCC approaches infinity as the rate of pure time preference ρ approaches zero. I briefly point out how the result changes if I had not normalized population to unity. I assume that the social welfare function is population-weighted per capita consumption and that population grows at the factor $G = \exp(g)$. Then, the root and the factor in equation 7 change to $(1 - \beta G)^{-1} \approx \frac{1}{\rho - g}$. The SCC becomes even more sensitive to the rate of pure time preference. The intuition is that population weighted per-capita consumption puts additional weight on future generations that are more numerous, acting as a reduction of time preference. As is well-known, the value function no longer converges as $\rho \to g$. Note that, in contrast to the SCC, the temperature’s shadow value does not have a root.

10 The marginal damage curve would also be negatively sloped if the damage function was less convex, resembling more closely that of the DICE model at high temperature levels. The intuition is that the logarithm in the radiative forcing equation is very strong, and that the underlying saturation in the CO$_2$ absorption spectrum can outweigh the damage convexity.

11 The maximal eigenvalue of the transition matrix Φ is unity. The corresponding eigenvector governs the long-run distribution as the transitions corresponding to all other eigenvectors are damped. I obtain the 0.06 as the first entry of the corresponding eigenvector.

12 The present objective function and the dynamic programming equation are not well-defined in the limit of a zero rate of pure time preference. However, the statement holds in that for any $n \in \mathbb{N}$ there exists a strictly positive pure rate of time preference ρ such that $SCC(\rho) > N$.

17
The matrix σ does not have a unit eigenvalue because the planet exchanges heat with outer space. The long-run temperature responds to changes of radiative forcing without hysteresis, i.e., without path dependence. Appendix C.1 illustrates Proposition 3 for a two-layer carbon cycle, and Appendix C.2 the absence of such sensitivity for a two-layer atmosphere-ocean temperature system. It also shows how a frequently used decay approximation of the carbon cycle misses the sensitivity to pure time preference.

It is well-known that the consumption discount rate plays a crucial role in valuing long-run impacts. The present finding is different. In ACE (as in DICE), the economic impact of climate change grows proportionally to output. Given the logarithmic utility specification, future economic growth does not affect the present SCC. The usual consumption discount rate argument based on the Ramsey equation does not apply. Yet, the SCC is extremely sensitive to the rate of pure time preference. It is a widely held belief in the integrated assessment community that it is of little importance how we calibrate the constituents of the consumption discount rate, as long as pure time preference and the growth-based component add up to the same overall consumption discount rate (Nordhaus 2007). The present finding fleshes out the shortcoming of this consumption discount rate based reasoning.

To illustrate the SCC’s sensitivity to pure time preference, I reduce the investment-rate-implied annual rate $\rho = 1.75\%$ to a value of $\rho = 1\%$. The SCC increases to 93 USD per ton C or 25.5 USD per ton CO$_2$. Further reducing the rate of pure time preference to the value of $\rho = 0.1\%$ employed in the Stern (2007) Review results in an optimal carbon tax of 660 USD per ton C and 180 USD per ton CO$_2$. The Stern Review justified its low pick of the rate of pure time preference by normative reasoning, market failure, and a dual role of individuals who might behave differently on the market compared to large-picture policy decisions (Hepburn 2006).

Schneider et al. (2013) show in a continuous time overlapping generations model how the common infinitely-lived-agent based calibration of IAMs overestimates the rate of pure time preference under limited altruism. In addition, the present model, like other IAMs, does not explicitly model the actual portfolio of risky investments and, yet, calibrates to overall investment and the Ramsey equation. In an asset pricing context, Bansal et al. (2012) calibrate the pure rate of time preference to $\rho = 0.11\%$, carefully disentangling risk attitude and risk premia from consumption smoothing and the risk-free discount rate. Their model explains observed asset prices significantly better than any asset pricing approach based on the standard economic model with higher time preference. Traeger (2012a) shows how uncertainty-based discounting of an agent whose risk aversion does not coincide with her consumption smoothing preference (falsely) manifests as pure time preference in the

13 Temperature is an intensive quantity and a conservation of “heat” would imply that the rows of the matrix σ added to unity. However, the atmospheric layer constantly exchanges heat with outer space. Formally, the subtraction of σ^{forc} which implies that the first row of the matrix σ does not add to unity, implying that the largest eigenvalue of the matrix is smaller than unity and historic influences are damped.
economic standard model, and he discusses some implications for climate change evaluation. Disentangling the different contributions to the SCC for the $\rho = 0.1\%$ case delivers

$$SCC_t = \frac{\beta Y_t}{M_{pre}} \xi_0 \left[(1 - \beta \sigma)^{-1} \right]_{1,1} \sigma^{f_{arcc}} \left[(1 - \beta \Phi)^{-1} \right]_{1,1} = \frac{57,660 \ 8}{tC}.$$

The largest part of the increase, a factor 7, arises from the carbon cycle’s contribution. Note that there is no easy way to get the sensitive response to time preference right without separating temperature and carbon dynamics.

4 Uncertainty

Climate change per se is no longer uncertain. Data over centuries, millenia, and pre-historic time scales suggest a strong correlation between climate and atmospheric carbon dioxide levels and basic causal interactions like carbon dioxide’s absorption of outgoing radiation (greenhouse effect) can be measured in the laboratory. Yet, the (delayed) warming from an from a given emission trajectory is highly uncertain. First, we have a limited understanding of how carbon dioxide builds up in the atmosphere and, second, the temperature response to an increase in atmospheric carbon dioxide is highly uncertain. In the following, I extend the model to incorporate and evaluate uncertainty. Then, I characterize a general class of stochastic processes for which ACE permits analytic solutions.

4.1 Uncertainty and Risk Attitude

Logarithmic utility provides a reasonable description of intertemporal substitutability. However, the assumption performs poorly in capturing risk attitude. The long-run risk literature estimates the coefficient of relative risk aversion of a representative household closer to 10 than to unity (Vissering-Jørgensen & Attanasio 2003, Bansal & Yaron 2004, Bansal et al. 2010, Chen et al. 2013, Bansal et al. 2012). Merely increasing the utility function’s curvature would result in a much larger risk-free discount rate than observed in the markets (risk-free rate puzzle). The market rejects the assumption that the intertemporal elastisity of substitution fully determines risk attitude. This assumption is built into the standard intertemporally additive expected utility model and implies a form of risk neutrality in intertemporal choice (Traeger 2014). I follow the asset pricing literature, an increasing strand of macroeconomic literature, and some recent numeric approaches to climate change assessment (Crost & Traeger 2014, ?) in using Epstein-Zin-Weil preferences. This approach

14 Nakamura et al. (2013) obtain one of the lowest estimates by combining the long-run risk model and the Barro-Riesz model, still resulting in a coefficient of relative risk aversion of 6.4.
accommodates a realistic coefficient of risk aversion, disentangling it from the unit elasticity of intertemporal substitution.

I denote the underlying probability space by $(\Omega, \mathcal{F}, \mathbb{P})$. Some scenarios require explicit informational states that I denote by the vector I_t. The Bellman equation under uncertainty is

$$V(k_t, \tau_t, M_t, R_t, I_t, t) = \max_{x_t, N_t} \log c_t$$

$$+ \frac{\beta}{\alpha} \log \left(E_t \exp \left[\alpha \left(V(k_{t+1}, \tau_{t+1}, M_{t+1}, R_{t+1}, I_{t+1}, t) \right) \right] \right).$$

Expectations E_t are conditional on time t information. The non-linear uncertainty aggregator is a generalized mean $f^{-1} E_t f$ with $f(\cdot) = \exp(\alpha \cdot)$. A positive parameter α characterizes intrinsic risk loving, and a negative parameter characterizes intrinsic risk aversion.

Epstein & Zin’s (1991) original definition of disentangled Arrow-Pratt risk aversion delivers the coefficient of constant relative risk aversion RRA$= 1 - \frac{\alpha}{(1-\beta)}$. In the present model, it is not Arrow-Pratt risk aversion that drives risk averse behavior, but the parameter $-\alpha$ itself. Intuitively, $-\alpha$ measures how much more averse a decision maker is to risk than to deterministic consumption fluctuations. The limit $\alpha \to 0$ recovers the usual Bellman equation where risk aversion is merely generated by aversion to intertemporal inequality. Traeger (2014) gives an axiomatic definition of α as an intrinsic measure of risk attitude.

The asset pricing literature estimates Epstein & Zin’s (1991) Arrow-Pratt risk aversion parameter RRA in the range of $[6, 9.5]$, which implies $\alpha \in [-1, -1.5]$. Note that Epstein-Zin preferences face the same issue as standard expected utility theory when it comes to calibrating risk aversion in the small and in the large (Rabin 2000): calibrating aversion on small bets requires degrees of risk aversion that are unreasonably high for large bets. Consequently, I use $\alpha = -1$ for quantitative examples with high uncertainty and $\alpha = -1.5$ for quantitative examples with low uncertainty. Figure 6 in Appendix D illustrates the corresponding risk aversion for a small and a large binary lottery. The analytic formulas make it easy for the reader to vary the degree of risk aversion for the quantitative results.

4.2 Stochastic Equations of Motion and General Solution

Under uncertainty M_t and τ_t, $t \in \mathbb{N}$, are stochastic processes. I constrain their equations of motion by requiring that the conditional one step ahead expectations coincide with the

15The space will be equipped with the filtration $\{\mathcal{F}_t\}_{t \in \mathbb{N}}$ generated by the stochastic processes driving carbon accumulation and temperature. The filtration \mathcal{F}_t captures all information available at time t and the conditional expectation is $E_t(\cdot) \equiv E(\cdot | \mathcal{F}_t)$. The state vector I_t captures the structural information affecting the value function.
deterministic equations of motion (3) and (7)

\[
\mathbb{E}(M_{t+1}|M_t, I_0) = \Phi M_t + \left(\sum_{i=1}^{l^d} E_{i,t} + E^\text{exo}_t \right) e_1 \quad \text{and} \quad (11)
\]

\[
\mathbb{E}(\tau_{t+1}|\tau_t, M_t, I_0) = \sigma \tau_t + \sigma_{\text{forc}} M_{1,t} + G_t e_1 \quad . \quad (13)
\]

I fixed the structural information at its present day value \(I_0\). In a scenario with structural learning, we cannot expect that the future estimates of the one step ahead expectation under \(I_t\) will coincide with today’s best guess. The scenarios incorporating structural uncertainty or persistent shocks require an additional equation of motion for their informational variables

\[
I_{t+1} = h \left(\Phi, \sigma, M_t, \tau_t, I_t, \sum_{i=1}^{l^d} E_{i,t} + E^\text{exo}_t, G_t, \omega \right) , \quad (14)
\]

where information updating depends on the realization \(\omega \in \Omega\).

Examples of stochastic processes satisfying equations (11) and (13) are the following modifications of the carbon cycle’s and the temperature system’s equation of motion

\[
M_{t+1} = \Phi M_t + \left(\epsilon^M_t - \epsilon^M_0, 0, ..., 0 \right)^\top + e_1 \left(\sum_{i=1}^{l^d} E_{i,t} + E^\text{exo}_t \right) , \quad (15)
\]

\[
\tau_{t+1} = \sigma \tau_t + \sigma_{\text{forc}} M_{1,t} + G_t e_1 + \epsilon^\tau_t e_1 \quad . \quad (16)
\]

where \(\epsilon^M_t\) and \(\epsilon^\tau_t, t \in \{0, ..., \infty\}\) are sequences of random variables satisfying \(\epsilon^M_0 = \epsilon^\tau_0 = 0\). The next section discuss the uncertainties surrounding \(\epsilon^M_t\) (carbon flow between the atmosphere and the upper ocean and biosphere) and \(\epsilon^\tau_t\) (atmospheric temperature uncertainty). The subsequent sections explore models where these sequences are driven by autoregressive shocks or by learning as well as models that cannot be represented by a simple additively separable stochastic shock term as in the present example.

The proposition below characterizes a class of stochastic processes that permit an analytic solution of the stochastic ACE model. A solution can either result in an explicit formula for the optimal carbon tax or define the optimal policy implicitly by translating the dynamic optimization problem into a set of algebraic equations that solve trivially on a computer. The proposition relies on the following observations. First, an affine value function solves the deterministic model. Second, if the value function is affine, then the expectation formation in the Bellman equation (10) resembles a cumulant generating function \(G_X(z) \equiv \log [\mathbb{E}\exp(zX)]\) of a random vector \(X\). Third, if we find a cumulant generating function that preserves the value function’s affine structure, the same procedure that solves the deterministic model promises to solve the stochastic model. The cumulant generating function is the logarithm of the moment generating function.

Proposition 4 Let \(X_t = (M_t, \tau_t, I_t) \in \mathbb{R}^N\) follow an affine process satisfying equations (11-14) whose conditional cumulant generating function satisfies

\[
G_{X_{t+1}}(z) = \log [\mathbb{E} \left\{ \exp(z X_{t+1}) \right\} | X_t] = a(z) + \sum_{i=1}^{N} b_i(z) X_{t,i} \quad . \quad (17)
\]
Then, an affine value function solves ACE’s dynamic programming problem if and only if
the set of shadow values $\varphi^T, \varphi^T, \varphi^T$ solves the algebraic equations

$$
\varphi_{M,i} = \frac{\beta}{\alpha} b^M_i (\alpha \varphi^T_M, \alpha \varphi^T, \alpha \varphi^T) \quad \forall i = 1, \ldots, m
$$

$$
\varphi_{\tau,i} = \frac{\beta}{\alpha} b^\tau_i (\alpha \varphi^T_M, \alpha \varphi^T, \alpha \varphi^T) - \delta_{i,1}(1 + \beta \varphi_k) \xi_0 \quad \forall i = 1, \ldots, l
$$

$$
\varphi_{I,i} = \frac{\beta}{\alpha} b^I_i (\alpha \varphi^T_M, \alpha \varphi^T, \alpha \varphi^T) - \delta_{i,1}(1 + \beta \varphi_k) \xi_0 \quad \forall i = 1, \ldots, N - l - m
$$

where $(b^M_1, \ldots, b^M_m, b^\tau_1, \ldots, b^\tau_l, b^I_1, \ldots, b^I_{N-l-m}) = (b_1, \ldots, b_N)$ and $\delta_{i,j}$ denotes the Kronecker-delta (one if $i = j$ and zero otherwise). The shadow value $\varphi_{M,1}$ determines the optimal carbon tax. The function $a(z)$ does not affect the optimal policies. It directly affects welfare.

Proposition (17) reduces a high dimensional dynamic programming problem to a simple system of algebraic equations that is trivially solved on a computer.

A crucial classification of the stochastic processes satisfying assumption (17) distinguishes whether they imply non-trivial functions $a(z), b_i(z)$, or both. Most of the analytic assessments of climate change under uncertainty have focused on the welfare impact of uncertainty. The set of stochastic processes providing a non-trivial welfare impact modulated through the function $a(z)$ is large. It includes the normal-normal Bayesian learning model and autoregressive shock models with (almost) arbitrary distribution (Section 3). I extend the class by a model that tracks an almost arbitrary epistemological uncertainty distributions through its cumulants in Section 7. Proposition (17) shows that stochastic processes only contributing a non-trivial function $a(z)$ have no impact on optimal policy. The proposition thereby emphasizes that the precise nature of the uncertainty is crucial for determining the risk response. Merely showing that uncertainty can have a large welfare impact does not necessarily imply that it will alter our climate policy.

The set of stochastic processes satisfying assumption (17) and implying a non-trivial function $b_i(z)$ is more constrained, yet, sufficiently rich to permit both analytic insights into and quantification of the uncertainty response of the optimal carbon tax. A process that permits a somewhat general analytic (explicit) solution of the carbon tax is the square root Gaussian process in Section 5.1. For a single uncertain temperature layer I also obtain an explicit solution for the autoregressive gamma process derived in GourierouxJasiak06 and, in its multivariate generalization, Le et al. (2010). In its general form this autoregressive gamma process discussed in Section 5.2 is also particularly useful for a quantitative calibration.

4.3 Carbon Sink Uncertainty

Over 10% of the annual flow of anthropogenic carbon emissions leave the atmosphere into an unidentified sink. These missing 1Gt+ in the carbon budget are over twice the weight
of all humans walking the planet. Current research is not conclusive, but a likely candidate for at least part of the “missing sink” are boreal or tropical forests. The limitations in understanding the carbon flows and whether the uptake of the missing sink is permanent or temporary create major uncertainties in predicting future carbon dynamics. The scientific community and governments invest substantial sums into the reduction of these uncertainties, including the launching of satellites and new supercomputing facilities. ACE can produce a simple estimate of the welfare costs of these uncertainties and serve as a formal model for quantifying the benefits of uncertainty reduction.

I suggest two conceptually different ways to think about the uncertainty. In the first interpretation, we worry merely about changes in the carbon flows over time that we cannot predicted with certainty. A small persistent shock to \(\epsilon \) moves the carbon flow and either increases or decreases the sink uptake. Over time, these shocks accumulate and so does the uncertainty in forecasting future carbon levels, temperatures, and economic damages. In the second interpretation, the main uncertainty is epistemological: it reflects a lack of knowledge in the scientific community. In this setting, the present decision maker faces the most uncertainty and we expect to have more knowledge of the carbon flow dynamics in the future, making the system more predictable. I will treat these two cases in the subsequent two sections and compare their economic implications analytically. The final section quantifies the welfare impact and the resulting willingness to pay for a risk reduction.

4.4 On Temperature Tail(s)

So far, I have assumed that a doubling of the CO\(_2\) concentrations from its pre-industrial concentration of 280 ppm to 560 ppm yields a medium-term temperature increase of 3°C. At present, CO\(_2\) levels are up to almost 400 ppm. Including the CO\(_2\) equivalent forcing of other GHGs, the level is already close to 480 ppm. The present warming is still much lower than the corresponding equilibrium increase because of the atmosphere-ocean temperature interaction discussed in sections 2.2 and 3.1. The implied 3°C warming in the (medium-run) equilibrium is little more than a best guess. The value depends on a set of uncertain feedback processes that either increase or decrease the initial warming. For example, higher temperatures imply more evaporation, and water vapor itself is a powerful GHG. The value of 3°C was cited as the best guess in the first four IPCC assessment reports. The latest report deleted this best guess and only cites a likely range of 1.5-4.5°C (IPCC 2013).

Meinshausen et al. (2009) collect 20 estimates of the probability distributions governing the temperature increase from a doubling of the CO\(_2\) concentration, the so-called climate sensitivity. These estimates derive from different research groups and use a variety of methodological approaches. My evaluation of temperature uncertainty relies on the average distribution assigning equal weight to each approach. The climate sensitivity distribution governing global warming is positively skewed, i.e., it exhibits a pronounced right tail. I
refer to Appendix E.2 and Figure 8 for details. The support of these distributions spans from no warming to a 10°C warming. The climate sensitivity distribution governing global warming is positively skewed, i.e., it exhibits a pronounced right tail. A warming above 10°C is possible but lacks probabilistic estimates.

ACE’s equations of motion are exponential in temperature (linear in $\tau_1 = \exp(\xi_1 T_1)$). Thus, even a normal distribution of temperature can translate into a log-normal distribution in the linear equations of motion. By section 6.1, the resulting welfare loss is proportional to the cumulant generating function. The cumulant generating function of the log-normal distribution is infinite. Hence, I can easily set up a model that delivers an infinite welfare loss from climate sensitivity uncertainty. This result takes Weitzman’s (2009a) “dismal theorem” and Millner’s (2013) extension from their stylized frameworks into a full-fledged and well-calibrated integrated assessment model. Here, even the thin-tailed normal distribution as opposed to the fat-tailed prior in Weitzman (2009a) can blow up the welfare loss through its translation into economic damages. In a DICE-style stochastic IAM Kelly & Tan (2015b) show that fat tails on climate sensitivity are accompanied by relatively quick learning. Such quick learning has, first, not been observed and, second, would make the tails of climate sensitivity less important. These results lessen the concern about fat-tailed uncertainty over climate sensitivity. However, in contrast to Weitzman’s result, the present reasoning does not rely on the fatness of the climate sensitivity tail. Here, thin-tailed uncertainty interacts with temperature dynamics and the convexity of damages and continues to emphasize the importance of using stochastic rather than deterministic models for climate change evaluation.

These results rely on the extrapolation of different functional forms that capture our best guess of what happens at moderate degrees of warming. However, no economic model to date has incorporated a reasonable quantitative characterization of what happens to life and welfare on planet Earth for a 20°C or 30°C global temperature increase. Should we concluded that we commit all of our economic resources to fighting global warming? No. It is already daring to evaluate damages from a warming of up to 10°C with state of the art integrated assessment models. To evaluate even higher temperature and damage scenarios, we should not rely on the extrapolation of functional forms, but build a separate model aiming directly at the quantification of scenarios that lie far from experience and imagination. What ACE can do is estimate a lower bound of the welfare loss from uncertainty given a warming range

16 Figure 2 shows that for temperature increases up to 12°C, ACE’s base case damage specification delivers damages lower than DICE. More than that, the “dismal result” holds for any $\xi_0 > 0$, implying that I can make damages at any given temperature level arbitrarily small and still find an infinite welfare loss from temperature uncertainty.

17 Also technically, the result hinges on a crucial assumption that makes it inadequate for the evaluation of high temperature tails. Representations of rational preferences by expected utility, including the present representation, require bounded utility functions or alternative assumptions with similar consequences (von Neumann & Morgenstern 1944, Kreps 1988). The “dismal result” depends crucially on not meeting this rationality assumption when the damage distribution approaches full output loss with high density.
for which damages and temperature dynamics seem somewhat reasonable.

5 Uncertainty and the Optimal Carbon Tax

The present section analyzes the optimal carbon tax under uncertainty. First, I present a Gaussian uncertainty model. It permits a full analytic solution with joint uncertainties in the climate system and the carbon cycle. Second, I study the autoregressive gamma model. The model is better suited for a quantitative analysis, but does not permit an explicit formula for the optimal carbon tax in general. Yet, the special case of a one layer temperature system permits and explicit solution assuming only temperature uncertainty. For a calibrated quantitative version please follow the link on the first page of this paper.

5.1 The Gaussian Model

The standard linear-in-state model does not allow uncertainty to scale with the state variables, unless the decision maker is intertemporal risk neutral ($\alpha = 0$) and his (Arrow-Pratt) risk aversion is only generated by his desire to smooth consumption over time. However, first, we expect uncertainty to increase the further we are away from pre-industrial and current carbon and temperature levels. Second, uncertainty affects welfare through the curvature of the value function and risk aversion but choice variables only by shifting their marginal value. In the standard linear-in-state model, choices are an immediate function of the shadow values of the state variables and these are constant. The first stochastic process useful to analyze optimal policy breaks with the linearity and allows uncertainty to scale with the stock of carbon and with the deviation from pre-industrial temperature.

I introduce a mixed “linear-and-square-root-in-state-system” system. The random terms will be proportional to the square root of the states, and the deterministic contributions maintain their linear structure. The resulting dynamic system will be non-linear in the transformed states. The Bellman equation maintains a linear structure in the states after the risk averse evaluation of the uncertainty contributions. The equations determining the shadow values become quadratic, permitting a closed-form solution of non-separable uncertainty that moves the controls and the carbon tax. Note that the system is more general than the linear-quadratic or the linear-quadratic exponential Gaussian system in not imposing a particular functional form on the payoff or the controls.

I introduce stochastic shocks to the equations of motion of the carbon cycle and the

\footnote{Equation (24) spells out the reason. The risk averse evaluation of uncertainty results in the sum of cumulants of the random term. Only the first cumulant, representing the expected value, conserves linearity. If the cumulant generating function was to be evaluated at a state, higher order contributions would render the system non-linear.}
atmospheric temperature θ_M in the persistent $\epsilon-$ shock form with

$$\epsilon_{\tau_{i+1}} = \gamma_\tau \epsilon_{\tau_{i}} + \sqrt{\tau_{i-1} - \eta_\tau} \chi_{\tau_{i}}^\tau, \quad (20)$$

where $\chi_{\tau} \sim N(0, \sigma^2_{\tau}).$ The parameters γ_i capture the persistence of the shock for $i \in \{M, \tau\}.$ The parameters $\eta_i \in [0, 1]$ determine whether uncertainty drops to zero at preindustrial levels ($\gamma_i = 1$) or remains positive. The square root terms imply that uncertainty increases with the amount of carbon in the atmosphere and with the temperature increase.

Proposition 5 Under the uncertainty specified in equations (15), (??), and (19-20) the optimal carbon tax changes from the deterministic SCC$_{det}$ stated in Proposition 2 to

$$SCC^{unc} = \frac{\beta Y_t \xi_0}{M_{pre}} \left[(1 - \beta \sigma)^{-1} \right]_{1,1} \frac{\sigma^2_{forc} [(1 - \beta \Phi)^{-1}]_{1,1} \left(1 - \sqrt{1 - 4 \theta_M^2} \right)}{2 \theta_M^2} \left(1 - \sqrt{1 - 4 \theta_{\tau}^2} \right)$$

$$\approx SCC_{det} \left(1 + \theta_{\tau} + \frac{1}{2} \frac{\theta_{\tau}^2 + \frac{5}{16} \theta_{\tau}^3}{(1 - \beta \gamma_{\tau}^2 2 M_{pre}^2)} \right)$$

$$\approx SCC_{det} \left(1 + \alpha \left(\frac{\beta^2 \Delta \varphi_{det}^M \sigma^2_M}{1 - \beta \gamma_{\tau}^2 2 M_{pre}^2} + \frac{\beta^2 \varphi_{det}^{\tau,1} \sigma^2_{\tau}}{2 \theta_{\tau}^2} \right) \right)$$

$$+ 2 \alpha^2 \left(\frac{\beta^2 \Delta \varphi_{det}^M \sigma^2_M}{1 - \beta \gamma_{\tau}^2 2 M_{pre}^2} + \frac{\beta^2 \varphi_{det}^{\tau,1} \sigma^2_{\tau}}{2 \theta_{\tau}^2} \right)^2.$$

with

$$\theta_M = \alpha \beta \frac{\sigma^2_M}{2 M_{pre}^2} \frac{\beta \Delta \varphi_{det}^M}{1 - \beta \gamma_{\tau}^2 2 M_{pre}^2} \left(1 - \sqrt{1 - 4 \theta_{\tau}^2} \right)$$

$$\theta_{\tau} = \alpha \beta \frac{\beta \sigma^2_{\tau}}{1 - \beta \gamma_{\tau}^2 2 \varphi_{det}^{\tau,1}}.$$

Here, $\Delta \varphi_{det}^M$ denotes that shadow value difference that prevails under certainty between carbon in the atmosphere and the first upper ocean and biosphere sink, and φ_{det}^τ denotes the shadow value of a generalized temperature increase under certainty.

$$\Delta \varphi_{det}^M = \frac{\beta \varphi_{det}^{\tau,1} \sigma^2_{forc}}{M_{pre}} \left[(1 - \beta \Phi)^{-1} \right]_{1,1} - \left[(1 - \beta \Phi)^{-1} \right]_{1,2}$$

$$\varphi_{det}^\tau = -\frac{\xi_0}{1 - \beta K} \left[(1 - \beta \sigma)^{-1} \right]_{1,1}.$$

The first order increase of the optimal carbon tax is proportional to (intrinsic) risk aversion $-\alpha,$ to the variance of the shocks $\sigma^2_i, i \in \{M, \tau\},$ and to the damage semi-elasticity $\xi_0.$ It also is proportional to the persistence of atmospheric warming and the difference it makes for
future atmospheric carbon concentrations when we shift a carbon unit from the atmosphere to the ocean. Higher order contributions interact these contributions between the carbon cycle uncertainty and the temperature uncertainty.

The second (and crudest) approximation of the optimal carbon tax is very good for contributions of where the terms proportional to either variance contribute up to 10%. The approximation substantially undervalues the risk contribution for values around 15% and becomes unacceptable for values approaching 20%. The largest temperature variance for which the solution of the system is well defined is

$$\sigma^2 = \frac{1 - \beta \gamma}{2 \alpha \beta^2 \phi \Delta t}$$

delivering a doubling of the carbon tax. Adding the highest admissible carbon flow variance in addition to this temperature uncertainty,

$$\sigma^2 M = \frac{1 - \beta \gamma M}{2 \alpha \beta^2 \Delta \phi M \Delta t}$$

can increase the carbon tax by a factor 4. Outside of this range the model is not well-defined.

The (generalized) temperature’s variance enters the optimal carbon tax equations twice. First, it increases the carbon tax directly and, second, in increases the contribution from carbon flow uncertainty. In addition, the carbon tax will respond more rapidly to increases in temperature uncertainty because of the non-linear relation between temperature $T_{1,t}$ in degree Celsius and generalized temperature $\tau_{1,t}$. If temperature in degree Celsius was normally distribution with mean and variance μ_T and σ_T^2, then generalized temperature would be distributed with the variance $\sigma^2 = (\exp(\xi_1^2 \sigma_T^2) - 1) (\exp(\xi_1 \mu_T + \xi_1^2 \sigma_T^2))$, an expression that starts out as $\exp(2 \xi_1 \mu_T) \xi_1^2 \sigma_T^2$ for a small temperature variance and grows exponentially in the temperature variance. Note that I assume that generalized temperature rather than actual temperature is normally distributed. Thus, the reasoning is only useful as a rule of thumb to translate the temperature’s variance from degree Celsius into the generalized temperature counterpart, but it is not a formally consistent model transformation.

5.2 The Autoregressive Gamma Model

An autoregressive gamma process of the vector valued random variable X_t is obtained as the convolution of a gamma and a Poisson process: there exists a process Z_t such that $X_{t+1}|(Z_{t+1}, X_t)$ is gamma distributed with shape parameter $\nu + Z_{t+1}$ and $Z_{t+1}|X_{t+1}$ is Poisson distributed with parameter ρX_t. The parameter ρ governs the autoregression, the parameter c plays the crucial role in the variance and skewness, and the parameter ν is the shape parameter of the resulting long-run forecast, which is gamma distributed. The autoregressive gamma process has the mean $\nu c + \rho X_t$ and the variance $\nu c^2 + 2\rho X_t$.

In the multivariate application of the present model, the parameter ρ will correspond to the matrix A (autoregressive part). The parameters c_i will be free and determine the variance of state i, where i can be any of the carbon reservoirs and temperature layers, and
the parameters \(\nu_i \) are fixed by the condition for expected transitions
\[
E(M_{t+1}|M_t, I_0) = \Phi M_t + \left(\sum_{i=1}^{I_d} E_{t,i} + E_{t,exo} \right) e_1 \quad \text{and} \\
E(\tau_{t+1}|\tau_t, M_t, I_0) = \sigma \tau_t + \sigma_{\text{forc}} \frac{M_{t+1} + G_t}{M_{\text{pre}}} e_1
\]

The autoregressive gamma model cannot be written in terms of an additively separable shock. The co-variance matrices are
\[
\text{Var}(M_{t+1}|M_t, I_0) = c_M \mathbb{I} \left(2\Phi M_t + \left(\sum_{i=1}^{I_d} E_{t,i} + E_{t,exo} \right) e_1 \right) \quad \text{and} \\
\text{Var}(\tau_{t+1}|\tau_t, M_t, I_0) = c_\tau \mathbb{I} \left(2\sigma \tau_t + 2\sigma_{\text{forc}} \frac{M_{t+1}}{M_{\text{pre}}} e_1 + \sigma_{\text{forc}} \frac{G_t}{M_{\text{pre}}} e_1 \right)
\]

where the off-diagonal entries are zero and \(c = (c_M, c_\tau) \) is the exogenously calibrated vector scaling the variance (and skewness) of the states.

Proposition 6 The autoregressive gamma model implies the following system of equations for the shadow values including the optimal carbon tax characterized by \(\varphi_{M,1} \)
\[
\varphi_{M,i} = \delta_{i,1}^{\text{Kronecker}} \beta \varphi_{\tau,1} (1 - c_{\tau,1} \alpha \varphi_{\tau,1} M_{\text{pre}}) + \beta \sum_{j=1}^{N} \frac{\varphi_{M,j}}{1 - c_{M,i} \alpha \varphi_{M,j}} \Phi_{i,j} \\
\varphi_{\tau,i} = -\delta_{i,1}^{\text{Kronecker}} \left(1 + \beta \varphi_{\tau} \right) \xi_0 + \beta \sum_{j=1}^{L} \frac{\varphi_{\tau,j}}{1 - c_{\tau,i} \alpha \varphi_{\tau,j}} \sigma_{i,j}.
\]

In the special case of uncertainty only in atmospheric temperature and a single temperature layer model the resulting optimal carbon tax can be spelled out explicitly as
\[
SCC = SCC_{\text{det}} \left(1 + \frac{\beta \sigma}{1 - \beta \sigma} \alpha \varphi_{\tau,\text{det}} c_\tau + \frac{\beta \sigma + (\beta \sigma)^2}{(1 - \beta \sigma)^2} (\alpha \varphi_{\tau,\text{det}} c_\tau)^2 \right) + O[c_\tau^3].
\]

The term \(\varphi_{\tau,\text{det}} = -\frac{\xi_0}{1 - \beta \sigma} [(1 - \beta \sigma)^{-1}]_{1,1} \) denotes the shadow value of a generalize temperature change under certainty. The parameter \(c_\tau \) scales both the one step ahead variance of generalized atmospheric temperature
\[
\text{Var}(\tau_{t+1}|\tau_t, M_t, I_0) = c_\tau \left(2\sigma \tau_t + 2\sigma_{\text{forc}} \frac{M_{t+1}}{M_{\text{pre}}} + \sigma_{\text{forc}} \frac{G_t}{M_{\text{pre}}} \right).
\]

and its long-run mean which is gamma distributed.

For a quantitative calibration of this model please follow up using the link provided on the first page of this paper.
6 Risk Aversion, Learning, Time Preference & the Carbon Cycle

This section analyzes the welfare implications of uncertainty governing the carbon flows. First, focusing on the welfare implications permits a more general class of stochastic processes and enables analytic insights on the general interaction between risk aversion, distributional moments, and time preference sensitivity. Second, it allows me to present a Bayesian model incorporating epistemological uncertainty and anticipated learning.

6.1 Vector Autoregressive (VAR) Uncertainty

I assume a VAR(1) process to model persistent shocks that change the carbon flows in equation (15) in an unpredicted way

\[\epsilon_{t+1} = \gamma \epsilon_t + \chi_t, \]

(22)

where \(\gamma \leq 1 \) and the sequence \(\chi_{t,t\epsilon\{0,\ldots,\infty\}} \) is independently distributed (and \(\epsilon_0 = 0 \)). Appendix E derives the general welfare difference between the deterministic and the uncertain scenario. Here, I focus on a sequence of identically distributed shocks \(\chi_t \sim \chi \) with \(\mathbb{E} \chi = 0 \). The new shadow value \(\varphi_\epsilon \) of the persistent random variable in the carbon cycle is

\[\varphi_\epsilon = \frac{\beta}{1 - \gamma \beta} [\varphi_{M,1} - \varphi_{M,2}] . \]

(23)

The welfare cost of a carbon flow change increases in its persistence \(\gamma \) and the shadow value difference between carbon in the atmosphere and in the biosphere-ocean reservoir.

The welfare loss from uncertainty relates closely to the cumulant generating function \(G_\chi(z) = \log [\mathbb{E} \exp(z\chi)] \) of the random variable \(\chi \). The cumulant generating function is the logarithm of the moment generating function. In contrast to the central moments, the corresponding cumulants \(\kappa_i \) are additive for independent random variables and the \(i^{th} \) cumulant is homogenous of degree \(i \) under scalar multiplication (cumulant \(i \) of \(\lambda \chi \) is \(\lambda^i \kappa_i \)). For most distributions, the cumulant (or the moment) generating functions are tabled and a closed-form solution for the welfare loss follows directly.

Proposition 7 The vector autoregressive shock process specified in equations (15) and (22) reduces global welfare by

\[\Delta W^{VAR} = \frac{\beta}{\alpha(1 - \beta)} G_\chi(\alpha \varphi_\epsilon) = \frac{\beta}{\alpha(1 - \beta)} \sum_{i=1}^{\infty} \frac{\kappa_i (\alpha \varphi_\epsilon)^i}{i!} . \]

(24)

\footnote{The shadow values \(\varphi_{M,i}^T \) remain the same as in the deterministic scenario, which is a result of the linear autoregressive shock model. An accompanying paper on the optimal carbon tax’s response to uncertainty discusses variations that imply a direct response of these shadow values to uncertainty. For the present welfare analysis these variations are of second order.}
The first expression states that the welfare loss from carbon flow uncertainty is proportional to the shock’s cumulant generating function evaluated at the product of the flow’s shadow value φ_ϵ and the intertemporal risk aversion parameter α. The relevant measure of risk aversion is not the Arrow-Pratt measure but the that of intertemporal risk aversion α, which characterizes how much more averse an agent is to risk compared to deterministic consumption change. The factor $\frac{1}{1-\beta}$ reflects the infinite sum over (stationary) future shocks, and the factor β reflects the one period delay between the shock and its welfare impact.

The second expression for the welfare loss on the r.h.s. expands the function in terms of the random variable’s cumulants $\kappa_i, i \in \mathbb{N}$. The first cumulant is the expected value of χ. In the present case where $\kappa_1 = \mathbb{E} \chi = 0$, the second cumulant is the shock’s variance and the third cumulant is the third central moment specifying skewness. The higher order cumulants do not coincide exactly with the central moments, but relate closely. The welfare loss is the sum of the stochastic shock’s cumulants, each weighted with intertemporal risk aversion and the flow’s shadow value taken to the power of the cumulant’s order: the expectation is valued independently of risk aversion, the variance proportional to risk aversion, and skewness proportional to risk aversion squared. This basic structure for evaluating the welfare loss of different uncertainties will reappear in all uncertainty specifications.

For a high persistence of the carbon flow shocks (as calibrated in section 6.3), the evaluation of higher moments becomes increasingly sensitive to pure time preference: by equation (23) the shadow value’s power φ_ϵ is proportional to $(1 - \gamma \beta)^{-1}$. In particular, the welfare loss from a shock’s variance and skewness will be more sensitive to the calibration of pure time preference than the welfare loss from the deterministic component (expected flow).

In the case of a mean-zero normally distributed iid shock $\chi \sim \mathcal{N}(0, \sigma^2_\chi)$ only the second cumulant $\kappa_2 = \sigma^2_\chi$ differs from zero, and the welfare impact is

$$
\Delta W^{VAR,normal} = \frac{\alpha \beta}{1-\beta} \frac{\sigma^2_\chi}{2} = \frac{\alpha \beta}{1-\beta} \left(\frac{\beta}{1-\gamma \beta} \right)^2 (\varphi_{M,1}-\varphi_{M,2})^2 \frac{\sigma^2_\chi}{2}.
$$

The welfare loss is proportional to the shock’s variance and the square of the shadow value φ_ϵ and, thus, proportional to the squared difference between the shadow values of carbon in the atmosphere and in the biosphere-ocean reservoir. Its proportionality to $(1 - \gamma \beta)^{-2}$ makes the welfare from an individual shock highly sensitive to high persistence and to low rates of pure time preference.\(^{20}\)

\(^{20}\)For an independently distributed shock, where $\gamma = 0$, the welfare loss is not sensitive to time preference if keeping the disentangled Arrow-Pratt risk aversion measure $\frac{\alpha}{1-\beta}$ constant. However, leaving the Arrow-Pratt risk aversion framework, Traeger (2014) argues that α by itself is a measure of intrinsic risk aversion. The binary lotteries in Appendix D illustrate this measure of risk aversion. Then, the expression in equation (25) is even more sensitivity to time preference.
6.2 Bayesian Uncertainty and Anticipated Learning

This section introduces epistemological uncertainty. It replaces the VAR(1) uncertainty by a Bayesian model, capturing the decision maker’s subjective uncertainty as well as her anticipation of learning over time. Closely related Bayesian learning models have first been used in integrated assessment of climate change by Kelly & Kolstad (1999) in a numeric application to climate sensitivity uncertainty and by Karp & Zhang (2006) in a stylized semi-analytic application to damage uncertainty. A subjective prior governs the uncertain carbon flow

\[\epsilon_t \sim N(\mu_{\epsilon,t}, \sigma_{\epsilon,t}^2), \mu_{\epsilon,0} = 0. \]

The normally distributed prior has an unknown mean and a known variance.

The equations of motion are subject to an objective stochastic shock \(\nu_t \sim N(0, \sigma_{\nu,t}^2) \), which can also be interpreted as a measurement error. This stochasticity prevents the decision maker from learning the prior’s mean from a single observation. Recently, three satellites were launched to reduce the carbon flow measurement errors \(\nu_t \) (one of whom dropped straight into the Artic sea). But learning is not limited to future observation. Given the availability of historic data, learning also takes place through the advances in fundamental scientific knowledge and supercomputing. Thus, I interpret \(\sigma_{\nu,t} \) merely as a parameter determining the speed of learning. Appendix E spells out the details of the model including the updating equations for the prior.

The new shadow value \(\varphi_\mu \) of a shift in the mean carbon flow between atmosphere and ocean is

\[\varphi_\mu = \frac{\beta}{1 - \beta} \left[\varphi_{M,1} - \varphi_{M,2} \right]. \]

This shadow value coincides with the shadow value of a perfectly persistent shock (equation 23).

Proposition 8 Bayesian epistemological carbon flow uncertainty with anticipated learning results in the welfare loss

\[
\Delta W^{Bayes} = \sum_{t=0}^{\infty} \beta^{t+1} \frac{\sigma_{\epsilon,t}^2 + \sigma_{\nu,t}^2}{2} \alpha \left(\varphi_{M,1} - \varphi_{M,2} \right)^2 \left(\frac{1}{1 - \beta} \right)^2 \Omega_t^2
\]

with \(\Omega_t \equiv \frac{\sigma_{\epsilon,t}^2}{\sigma_{\nu,t}^2 + \sigma_{\epsilon,t}^2} + (1 - \beta) \frac{\sigma_{\nu,t}^2}{\sigma_{\nu,t}^2 + \sigma_{\epsilon,t}^2} \),

which assumes a normal-normal conjugate prior model governing the learning about the uncertainty \(\epsilon_t \) in equation (15).

As in the case of a normally distributed autoregressive shock, the welfare loss is proportional to (intertemporal) risk aversion and the squared difference between the shadow values of
carbon in the atmosphere and in the biosphere-ocean sink. The relevant variance in the case of learning is the prior’s variance plus the variance of the periodic shock $\sigma^2_{\varepsilon,t} + \sigma^2_{\nu,t}$. The prior’s variance is declining as the decision maker improves her estimate of the true carbon flows. As a result of this non-stationarity, an infinite discounted sum replaces the factor $\frac{1}{1-\beta}$ observed in the VAR model of equation (25).

The main difference between the Bayesian learning model and the VAR model is the role of the uncertainty’s persistence and the resulting sensitivity to time preference. Initially, updates in the Bayesian framework act as perfectly persistent shocks. This effective persistence makes the Bayesian decision maker highly sensitive to pure time preference when anticipating uncertainty and learning shocks in the first few periods. Intuitively, while the prior is not yet sharply focused, the Bayesian decision maker updates her long-run belief over the expected carbon flows. If she is patient, this long-run update moves her welfare significantly. Formally, this finding is reflected in the factor $(\frac{1}{1-\beta})^2$ replacing the factor $(\frac{1}{1-\gamma\beta})^2$ of the VAR shock model (perfect persistence is $\gamma = 1$).

Over time, the Bayesian decision maker learns the carbon flow dynamics and eliminates epistemological uncertainty. The remaining uncertainty is merely noise. The shocks no longer carry informational value and their welfare impact corresponds merely to that of independently distributed stochastic shocks with no persistence. Therefore, later periods contribute little to the welfare loss from uncertainty and are hardly sensitive to pure time preference. Formally, this finding is reflected in the factor Ω_t. It is a weighted mean of unity and $1 - \beta$. Initially, the variance of the prior $\sigma^2_{\varepsilon,t}$ dominates, and $\Omega \approx 1$. Over time, the decision maker learns the subjectively uncertain part of the carbon flow uncertainty. As $\sigma^2_{\varepsilon,t}$ falls the weight on $1 - \beta$ increases and eventually $\Omega^2_t \rightarrow (1 - \beta)^2$, offsetting the term $(\frac{1}{1-\beta})^2$. Finally, compared to the VAR model, the Bayesian decision maker is uncertain about carbon flow uncertainty already in the present period. Therefore, the formula summarizing the welfare loss in Proposition 8 misses one power of the discount factor β compared to the VAR model of equation (25).

6.3 Quantifying the Welfare Impact of Carbon Cycle Uncertainty

The quantitative assessment of carbon cycle uncertainty is based on the DICE 2013 business as usual scenario and Joos et al. (2013), who subject 18 different carbon cycle models to a 100Gt and a 5000Gt carbon pulse and track their responses for up to 3000 years. The larger shock corresponds to 500 years of present day emissions and results in a medium run (100-1000 years) cross-model standard deviation of atmospheric carbon of approximately 500Gt. Joos et al.’s (2013) comparison study is subject to common bias, and this standard deviation is best interpreted as a lower bound of actual uncertainty. In the VAR model, Joos et al.’s (2013) simulations suggest a persistence in equation (25) of $\gamma = 0.997$, i.e., highly intertemporally correlated uncertainty governing the flow of carbon between the atmosphere
Figure 4: The graph on the left shows the evolution of atmospheric carbon for the DICE 2013 business as usual emission scenario. Decadal shocks with a standard deviation of $\sigma = 20$ Gt per decade change the flow between the atmosphere and the carbon sinks with a persistence of $\gamma_M = 0.997$ that is calibrated to the carbon cycle comparison study by Joos et al. (2013). The deterministic DICE evolution (5 year time steps, “Data”), the deterministic ACE evolution (10 year time steps), and the mean and the median of 1000 uncertain trajectories are hardly distinguishable. The right graph depicts the willingness to pay for a 1Gt uncertainty reduction. In the Bayesian learning case, the reduction is in the measurement error, increasing the speed of learning. In the case of the vector autoregressive shock model (“VAR”), the willingness to pay is based on a physical reduction of carbon flow stochasticity (e.g., a co-benefit of emission reductions).

and the sinks. I evaluate all carbon cycle uncertainty scenarios with a risk aversion coefficient of $\alpha = -1.5$ (see section 4.1 and Appendix D).

For the autoregressive shock scenario of section 6.1, I assume a standard deviation of the decadal shock of $\sigma = 20$ Gt per decade, which builds up into the 500 Gt forecast standard deviation suggested by Joos et al. (2013) approximately by the year 2300. Figure 4 left panel, evaluates the resulting carbon concentration along the business as usual scenario of DICE 2013. Appendix E.3 discusses variations. This uncertainty translates into a present value welfare loss of 110 billion USD. For a comparison of magnitude, the annual NASA budget is about 20 billion USD.

For the case of epistemological uncertainty, I assume that the Bayesian prior has a standard deviation of $\sigma_{x,0} = 20$ Gt per decade, and that the “measurement error” is $\sigma_v = 10$ Gt (corresponding approximately to the currently “missing” carbon flow). This combination of prior and measurement error implies a remaining epistemological uncertainty with a standard deviation of 4.4Gt per decade after 50 years and of 2.6Gt per decade after 150 years. The resulting welfare loss from carbon cycle uncertainty in this Bayesian learning scenario is approximately 30 billion USD. This value is most sensitive to the initial prior. Lowering initial uncertainty to $\sigma_{x,0} = 10$ Gt lowers the welfare loss to approximately 10 billion USD.

To obtain the same 110 billion USD welfare loss as from the VAR setting, I would have to raise initial uncertainty of the prior to as much as a 40Gt standard deviation.

In the case of an annual rate of pure time preference of $\rho = 0.1\%$ the uncertainty contributions increase to 2 trillion USD in the case of VAR shocks and to 60 trillion USD, or
73% of world output, in the case of Bayesian learning. Now, the Bayesian learning scenario implies the (much) higher welfare loss. It is a manifestation of the higher sensitivity to pure time preference that I derived in the previous section: the information gain from early shocks has an impact comparable to a perfectly persistent autoregressive shock, and the welfare loss from such shocks increases strongly in the decision maker’s patience.

It is fair to conclude that the absolute welfare costs from uncertainty over the carbon flows are small to moderate compared to the deterministic contributions discussed in section 3. A higher carbon shock implies both a higher temperature, leading to more convex damages, but also a higher satiation of the CO$_2$’s absorption spectrum, leading to a lower marginal impact of the last unit of emissions. These two effects largely offset each other and the remaining welfare costs are born directly from risk aversion. Under the standard discounting calibration, this welfare cost is 2-3 orders of magnitude lower than the welfare loss from present CO$_2$ concentrations (and the resulting warming that is already in the pipeline). Given the higher sensitivity to time preference, the welfare loss from uncertainty hesitantly catches up to a similar order of magnitude for the patient decision maker.

Figure 4, right panel, states the willingness to pay for a 1Gt reduction of the decadal standard deviation as a function of pure time preference. In the case of the VAR model, the uncertainty reduction lowers the physical stochasticity of the carbon flows ($\sigma_x = 10Gt \rightarrow 9Gt$). In the case of the Bayesian model, the uncertainty reduction lowers the measurement error and increases the speed of learning ($\sigma_\nu = 10Gt \rightarrow 9Gt$). The figure compares the welfare gain from better measurement and faster learning to the costs of a common satellite (~ 150 million USD), NASA’s Orbiting Carbon Observatory (~ 280 million), and the National Center for Atmospheric Research’s recent supercomputer (~ 70 million). For the standard calibration of the time preference these (American) investments are worth the (global) welfare gain. For an annual rate of time preference around 3% even the global welfare gain might no longer outweigh their costs in ACE. In contrast, a normatively or long-run risk founded rate of $\rho = 0.1\%$ increases the willingness to pay for a decadal 1Gt stochasticity reduction to approximately 110 billion USD, emphasizing again the particularly high sensitivity of the Bayesian uncertainty model to pure time preference.

21 The 14 trillion USD loss from the present atmospheric CO$_2$ concentration increases to 160 trillion USD for $\rho = 0.1\%$, which is at least the same order of magnitude as the 60 trillion USD loss from Bayesian uncertainty.

22 Reducing the carbon flow’s decadal standard deviation σ_x by 1 Gt reduces the welfare loss by the fraction $\frac{2}{\sigma_x} + \frac{1}{\sigma_x^2}$. This formula solves $x = \frac{\Delta W_{VAR, normal}^{\Delta x} - \Delta W_{VAR, normal}^{\Delta x-1}}{\Delta W_{VAR, normal}^{\Delta x}}$ for x. The graph is only visible in the upper right corner: the payoff of the physical stochastic shock reduction is much more valuable than a reduction of measurement error that accelerates learning.

23 NASA’s Orbiting Carbon Observatory is the investment closest to a direct reduction of measurement error to improve learning. Slowly coming out of its calibration phase, the ultimate precision is still unclear.
7 General Epistemological Uncertainty & Temperature

The present section discusses a non-normal learning for temperature uncertainty that can represent the numeric estimates of the probability distributions of the climate sensitivity derived in the scientific literature. The model combines epistemological uncertainty with persistent shocks. I quantify a lower bound for the welfare loss from uncertainty over the temperature response to a given CO$_2$ concentration (climate sensitivity).

7.1 A VAR Model with Epistemological Uncertainty

Temperature uncertainty has a major epistemological component. The only Bayesian (conjugate prior) model compatible with the risk aversion enhanced linear-in-state model seems to be the normal-normal learning model that I employed in section 6.2. For temperature uncertainty, I cannot reasonably assume a normal distribution. I introduce a combined epistemological and vector autoregressive shock model of uncertainty that disposes of the straight-jacket imposed by a normal distribution. This step comes at the expense of no longer being a strictly Bayesian model. I characterize an arbitrary probability distribution through its (countably infinite) sequence of cumulants, instead of relying on a parametric (or even conjugate) class of probability distributions. This approach further illustrates the usefulness of the cumulant-based approach, and it allows me to employ the numeric distribution derived in the scientific literature for a quantitative estimate of the welfare impact.

I represent uncertainty governing the temperature’s equation of motion as a random contribution ϵ^*_t to incremental warming, changing equation (7) to the form

$$\tau_{t+1} = \sigma \tau_t + \sigma_{force} \frac{M_{1,t} + G_t}{M_{pre}} e_1 + \epsilon^*_t e_1.$$

The random variable ϵ^*_t captures epistemological uncertainty in period t. In analogy to the Bayesian model only the distribution (not the realization) of ϵ^*_t is known to the decision maker in period t. Future shocks to this distribution capture both actual shocks as well as informational updates (see also footnote 25 below). I characterize the distribution of ϵ^*_t by its cumulants $\kappa_{i,t}$, $i \in \mathbb{N}$. Initial epistemological uncertainty is given by $\kappa_{i,0}$, $i \in \mathbb{N}$, and the cumulants follow the equations of motion

$$\kappa_{i,t+1} = \gamma^i \kappa_{i,t} + \chi^T_{i,t},$$

0 $\leq \gamma \leq 1$, for all $i \in \mathbb{N}$. The special case where $\kappa_i = 0$ for $i > 2$ relates closely to

\[\text{A normal on temperature in degree Celsius would ignore positive skewness and, yet, results would be driven by tails far from what I can reasonably calibrate. A normal on transformed temperature τ_1 would assign significant weight to large negative values of the atmospheric temperature increase T_1 in degree C.} \]
the Bayesian learning model in section 6.2. In the absence of shocks ($\chi_{\tau}^i = 0$ for all i), epistemological uncertainty decays at rate γ: ϵ_{t+1} is then distributed as $\gamma \epsilon_t$ (the i^{th} cumulant is homothetic of degree i). I assume that the stochastic shocks χ_{τ}^i are independently and identically distributed (see Appendix F.1 for the non-stationary case). These shocks modify epistemological knowledge and uncertainty. In the normally distributed Bayesian learning model, the uncertainty over the mean falls monotonically and quickly. In the VAR model, the persistent shocks remain constant over time and keep building up into forecast uncertainty. The present model combines these features. In addition, the model in equation (28) permits shocks to the variance $\chi_{\tau}^{2,t}$ (stochastic volatility), making the speed of learning itself uncertain (a feature also present in “non-normal” Bayesian learning models).

Proposition 9 The combined VAR-epistemological model for temperature uncertainty results in the welfare loss

$$\Delta W_{\text{temp}} = \sum_{i=1}^{\infty} \varphi_{\kappa,i} \kappa_{i,0} + \frac{\beta}{\alpha(1-\beta)} \sum_{i=1}^{\infty} G_{\chi_{\tau}^i} (\alpha \varphi_{\kappa,i})$$

(29)

where the cumulants $\kappa_{i,0}$ characterize the present epistemological uncertainty distribution (governing ϵ_0 in equation 28) and have the shadow values

$$\varphi_{\kappa,i} = \frac{\beta}{1 - \beta \gamma^i} \frac{(\alpha \varphi_{\tau,1})^i}{i! \alpha},$$

(30)

and the random variables χ_{τ}^i characterize iid shocks to the i^{th} cumulant of this epistemological distribution (equation 28).

The first contribution to the welfare loss in equation (29) derives from the epistemological uncertainty in the present ($t = 0$). The shadow values capture the welfare loss resulting from a unit increase of the corresponding cumulant. The shadow value $\varphi_{\kappa,1} = \frac{\beta}{1 - \beta \gamma} \varphi_{\tau,1}$ captures the welfare loss from a mean shift in (transformed) heat flow, and it is equivalent to the shadow value φ_{τ} in the VAR model (equation 23, with $\varphi_{\tau,1}$ replacing $\varphi_{M,1}$). The shadow value $\varphi_{\kappa,2} = \frac{\beta}{1 - \beta \gamma^2} \frac{\alpha \varphi_{\tau,1}^2}{2}$ captures the welfare cost of a unit increase of the variance. This cost combines characteristics of both the normal VAR shock model in equation (24) and the Bayesian model’s welfare loss in equation (27). The welfare impact prevails immediately and its impact ceases over time as in the Bayesian model, and a simple persistence parameter γ characterizes this decay resembling (though not coinciding with) that of the VAR model.

The Bayesian model would exhibit a time dependent parameter $\gamma_{i,t}$ in the equation of motion $\kappa_{i,t+1} = \gamma_{i,t} \kappa_{i,t} + \chi_{\tau}^i_t$, and require an additional non-persistent iid shock in equation (28) (which has little impact on the welfare evaluation). The parameter $\gamma_{2,t} = \sigma_{\tau}^2_t$ can be chosen to reproduce the learning of the Bayesian model (plus stochasticity ν_t), and the shocks $\chi_{\tau}^i_t$ would have to match the Bayesian updates of the mean.

Not all combinations of shocks to the cumulants will lead to well-defined probability distributions of ϵ_t. However, in such a case, the cumulants can still be considered a reasonable approximation of a closely related distribution.
Higher order cumulants contribute to the welfare loss proportional to the power $i - 1$ of intertemporal risk aversion and the power i of the generalized temperature’s shadow value, a finding also observed in section 6.1’s VAR setting. However, in contrast to the stationary VAR shocks in equation (24), the higher order moments of the epistemological distribution have a welfare impact that is less (rather than more) sensitive to pure time preference compared to the welfare impact of the distribution’s variance. In the VAR setting (and in the future shock term discussed below), the shocks take place in the future. Here, the uncertainty is in the present and persists, but higher cumulants decay faster because of the cumulants’ homogeneity of degree i.

The second contribution to the welfare loss in equation (29) derives from future shocks. These future shocks capture both autoregressive shocks as well as updates to the epistemological distribution. Due to the simplified setup, the persistence of an autoregressive shock coincides with the persistence of epistemological uncertainty γ. The $i = 1$ summand on the future shocks contribution in equation (29) captures shocks to the mean. The cumulant generating function G_{χ_1} of the iid shock to the mean governs the welfare impact. It is evaluated at the (intertemporal) risk aversion weighted shadow value of a unit shift of the mean of the distribution ϵ_τ. This welfare loss is equivalent to the one observed in equation (24) for VAR shocks to the carbon flow. In particular, the i^{th} cumulant of the shock χ_1^τ contributes once more proportional to the power $i - 1$ in risk aversion and to the power i in the temperature’s shadow value. Note that these cumulants of the shock χ_1^τ differ from the cumulants $\kappa_{i,\tau}$, $i \in \mathbb{N}$, that capture the epistemological uncertainty ϵ^τ_t prevailing in period t.

The $i = 2$ summand on the r.h.s. of equation (29) captures shocks to the variance of the distribution ϵ_τ. This type of uncertainty was absent in the pure VAR shock model and the normal-normal Bayesian learning model. It is similar to a stochastic volatility model. Here, the future uncertainty’s variance is itself subject to random shocks captured by the random variable χ_2^τ. The normal-normal Bayesian learning model is special in that the variance of the posterior falls deterministically. More general Bayesian learning models share the present feature that some realizations of shocks can increase future uncertainty. The simplest shock is a mean-zero normal shock to the variance, which is fully characterized by χ_2^τ’s variance. This shock causes a welfare loss proportional to the third power of risk aversion and the forth power of the temperature’s shadow value. More generally, an i^{th} order shock to the j^{th} cumulant of the epistemological uncertainty distribution causes a welfare loss that is proportional to risk aversion in the power $i \cdot j - 1$ and to the temperature’s shadow value to the power $i \cdot j$.

Finally, the sensitivity to pure time preference increases in the order of the shock’s moment but decreases in the order of the uncertainty distribution’s moment that is being shocked. The reduction in sensitivity to pure time preference for higher order moments is analogous to the case of the epistemological contribution discussed above and it vanishes for perfect persistence $\gamma \to 1$. The increasing sensitivity to pure time preference in the order of
7.2 Quantifying the Welfare Impact of Temperature Uncertainty

Once more, I employ DICE’s business as usual (BAU) emission scenario for a quantitative assessment. The solid (deterministic) line in Figure 4 depicts the resulting carbon concentration. I employ the average of Meinshausen et al.’s (2009) survey of climate sensitivity distributions, whose mean I shift to the 3C best guess, focusing on the impact of uncertainty only (\(F.2\)). Greenhouse gas concentrations significantly exceed a doubling of CO\(_2\) along the DICE BAU scenario, and I scale the temperature shocks to the corresponding forcing. Initial epistemological uncertainty \(\epsilon_0^\tau\) and the distribution of the shocks to the mean \(\chi_{1,t}\) are both chosen to reproduce climate sensitivity uncertainty if concentrations are double the pre-industrial level. Epistemological uncertainty \(\epsilon_0^\tau\) prevails immediately, whereas the shock uncertainty builds up over time.

I make the following four assumptions in the spirit of finding a lower bound of the welfare loss. First, I calibrate the shock uncertainty to produce the climate sensitivity distribution in the infinitely long run. Second, I split the overall climate sensitivity into an epistemological fraction \(\zeta\) and a shock-based long-run fraction \(1 - \zeta\). At any given point in time the actual forecast uncertainty will then be lower than the climate sensitivity distribution because epistemological uncertainty falls over time and the shocks only build up the fraction \(1 - \zeta\) in the long-run. Third, I omit possible contributions from stochastic volatility or shocks to higher order cumulants. Fourth, I pick \(\alpha = -1\) at the lower end of measured risk aversion.

My “baseline” scenario assumes a persistence \(\gamma = 0.9\) of both epistemological uncertainty and shocks to the mean, an equal split of overall climate sensitivity uncertainty between the epistemological and the shock contributions (\(\zeta = \frac{1}{2}\)), and the standard discount rate calibration to IMF 2015 data (\(\rho = 1.75\%\)). These assumption result in an overall welfare loss from climate sensitivity uncertainty of 16 trillion USD, approximately one year of US output. Initial epistemological uncertainty and the stochastic shocks contribute almost equal shares to this loss. As a consequence, attributing a larger or smaller share of the uncertainty to shocks and future updating hardly changes the welfare loss.

Varying the persistence of shocks and of epistemological uncertainty between a lower value of \(\gamma = 0.7\) and the higher value \(\gamma = 0.997\) calibrated for the carbon flow uncertainty varies the welfare loss between 11.5 and 20 trillion USD. A reduction of pure time preference to \(\rho = 0.1\%\) in the “baseline” scenario increases the loss to over 700 trillion USD or 8.5 years of world output. This factor 40 increase is significantly larger than the response of the carbon tax to the change in pure time preference. The scenario also confirms the theoretical finding that the future shock contributions are more sensitive to time preference than mere epistemological uncertainty: 95% of this welfare loss derives from the future shocks. I reiterate that the future shock component of the present model reflects the learning shocks
that make the Bayesian model particularly sensitivity to pure time preference. Thus, the finding fleshes out that the high sensitivity to pure time preference in the epistemological models does not result from the mere presence of epistemological uncertainty, but from its anticipated updating and the corresponding long-run welfare impact of the shocks.

Finally, the lower bound of the welfare loss from uncertainty over the climate’s sensitivity is 2-3 orders of magnitude higher than the best guess of the welfare loss from uncertainty over the carbon flows. A clear quantitative message from economics to science is to shift more attention to the feedback processes on the temperature side.

8 Conclusions

ACE is an integrated assessment model of climate change that matches scientific climate models just as well as do numeric models used in policy advising. It derives the optimal carbon tax and welfare loss in closed form. ACE merges Golosov et al.’s (2014) framework with a standard carbon cycle, radiative forcing, temperature dynamics, risk attitude, and different uncertainty frameworks. The resulting model closely resembles (a stochastic version) of the widely used integrated assessment model DICE. It improves the market calibration by disentangling intertemporal substitution and the low risk-free discount rate from risk aversion and risk premia.

The deterministic model finds a market-based optimal carbon tax of 57 USD per ton of carbon (15 USD per ton of CO₂), using a standard calibration approach. The closed-form solution shows that the carbon cycle’s persistence is the main multiplier of the SCC (almost a factor 4), whereas temperature dynamics cause a reduction of the optimal tax (by 40%). Analyzing the system’s shadow values, ACE shows that the welfare loss from the present increase in carbon concentrations is higher than from the present increase in global temperature (independent of future policy). Like Golosov et al.’s (2014) model, ACE implies a flat marginal benefit curve from mitigation. The finding underpins the advantages of a carbon tax over a cap and trade mechanism to regulate the climate externality. Another convenient consequence is that we do not have to know the highly complex mitigation technology frontier for optimal carbon regulation. Finally, optimal mitigation effort is independent of whether we followed business as usual or optimal policy in the past. If we “sinned” in the past, the optimal policy will not tell us to repent, but to live with the (perpetually) persisting consequences in the future.

A wide-spread belief is that the optimal carbon tax is sensitive to the overall consumption discount rate, but not to its individual constituents. In contrast, I prove in the present well-calibrated setting that mass conservation in the carbon cycle makes the optimal carbon tax highly sensitive to the rate of pure time preference (≈ \(\frac{1}{\rho} \)), whereas proportionality of damages to output make it insensitive to growth related discounting. The sensitivity to pure time preference weighs particularly strong because recent asset pricing approaches and
overlapping generations based calibration formulas suggest much lower rates of pure time preference that the 1.75% calibrated here following a standard approach. These more sophisticated approaches support rates as low as the 0.1%, which the Stern (2007) Review used for normative reasons. Such a pure rate of time preference increases the optimal carbon tax tenfold, with a sevenfold increase resulting from the carbon cycle interaction.

I employ ACE to advance our understanding of the welfare implications of uncertainty in climate change, distinguishing between epistemological uncertainty and shocks to the climate system. The moments (cumulants) of either of the uncertainty distributions reduce welfare proportional to the corresponding powers of the risk aversion weighted shadow value of a change in warming or carbon flows. The applicable measure of risk aversion is not the Arrow-Pratt measure, but a measure of intertemporal or intrinsic risk aversion. This measure characterizes how much more averse a decision maker is to risk than to deterministic consumption fluctuations. The welfare loss’ sensitivity to pure time preference increases for higher moments of the shock’s distribution, but slightly decreases for higher moments of the present epistemological uncertainty that captures the decision maker’s lack of knowledge. Bayesian updates to the epistemological uncertainty act initially like fully persistent shocks as they carry information on a permanent change of the system dynamics. Therefore, the overall welfare loss from uncertainty under anticipated learning is highly sensitive to pure time preference.

In the standard calibration, the welfare loss from carbon cycle uncertainty is in the order of a hundred billion USD. The willingness to pay for a reduction of the measurement error and for accelerated learning is in the order of half a billion per Gt C of decadal resolution (the cost of a few satellites and a supercomputer). The Bayesian model’s sensitivity to pure time preference increases this willingness to pay to 110 billion USD for a rate of pure time preference of 0.1%, which is more than the value of full uncertainty elimination in the standard calibration. Uncertainty about the temperature response to a given CO₂ path causes a lower bound welfare loss that is 2 to 3 orders of magnitudes larger, about one year of US output in the standard calibration, and over 8 years of world output under a rate of pure time preference of 0.1%.

Governments and research institutions are spending large amounts to better understand carbon flows. An immediate conclusion is that better assessments of the temperature feedback response have a significantly higher social payoff. The intuition is the following. Every additional ton of carbon in the atmosphere traps less energy than the preceding ton. This “decreasing harmfulness” of CO₂ to temperature offsets the convexity of damages from the implied warming and the decreasing marginal utility (governing intertemporal trade-offs). Thus, negative and positive shocks in the carbon flow would offset each other if it was not for (disentangled) risk aversion. Risk aversion implies a moderate willingness to pay for a risk reduction. In contrast, temperature feedbacks operate directly on temperatures. Because of the convex damage function, high temperature realizations cause more loss than is gained
back from low realizations. In expectation, the shocks reduce overall welfare, an effect that is only amplified by risk aversion.

The present paper paves the way for a wide array of analytic and quantitative research. ACE can be generalized for regional analysis, to examine adaptation, to analyze detailed damage channels like ocean-acidification or sea level rise, and to evaluate benefits from climate engineering projects. The present paper specifies the optimal carbon tax for a large class of energy sectors. Specifying their details permits an easy analysis of the sectoral emission response to optimal policy under technological uncertainty. Climate change is an intergenerational problem. The present paper focuses on market-based evaluation, following common practice of policy advising in the US. ACE also lends itself to a normatively motivated analysis. ACE’s major virtue is to combine quantitative analysis with analytic insight. Any analytic approach has its limitations in the non-linearities and interactions it can handle. The model serves best as a benchmark, guiding and helping to enlighten fine-tuned quantitative numeric research.

References

Pindyck, R. S. (2013), ‘Climate change policy: What do the models tell us?’, *Journal of Economic Literature* **51**(3), 860–872.

Appendix

Part I - The Deterministic Model

A General Capital Depreciation

Equation (2) assumes full capital depreciation. In this appendix, I show how to avoid the full capital depreciation assumption and match observed capital-output ratios through an exogenous adjustment of the capital growth rate. The model extension keeps the structural assumptions that imply a constant investment rate. Under a depreciation rate δ_k the capital accumulation equation (2) changes to

$$K_{t+1} = Y_t[1 - D_t(T_{1,t})] - C_t + (1 - \delta_k)K_t .$$

Defining the consumption rate $x_t = \frac{Y_t[1 - D_t(T_{1,t})]}{C_t}$ and recognizing that $Y_t[1 - D_t(T_{1,t})] - C_t = K_{t+1} - (1 - \delta_k)K_t$ by definition implies

$$K_{t+1} = Y_t[1 - D_t(T_{1,t})](1 - x_t) \left[1 + \frac{1 - \delta_k}{K_{t+1} - (1 - \delta_k)} \right] .$$

Defining the capital growth rate $g_{k,t} = \frac{K_{t+1}}{K_t} - 1$, I obtain the equivalent equation of motion for capital

$$K_{t+1} = Y_t[1 - D_t(T_{1,t})](1 - x_t) \left[1 + \frac{1 + g_{k,t}}{\delta_k + g_{k,t}} \right] . \tag{A.1}$$

For full depreciation $\delta_k = 1$ the squared bracket is unity and equation (A.1) coincides with equation (2) in the main text. For $\delta_k < 1$ the squared bracket states an empirical correction multiplier larger unity. First, this multiplier can be used to match the model’s capital accumulation to the empirical capital accumulation. Second, this multiplier makes the social planner (or representative agent) realize the additional capital value deriving from its persistence beyond its end-of-period value for production. Replacing equation (2) with equation (A.1) does not change the SCC or the formulas for the welfare loss from climate change and uncertainty.

Treating the growth and depreciation correction in squared brackets as exogenous remains an approximation. The extension shows that the model is robust against the immediate criticism of not being able to represent the correct capital evolution and capital output ratio, and against the agent’s neglecting of capital value beyond the time step. The crucial result from and, thus, implicit assumption underlying equations (2) and (A.1) is that the investment rate is independent of the climate states. It is the price to pay for an analytic solution. The remainder of this section shows that this price seems small.
Figure 5 tests ACE’s result (and implicit assumption) that the optimal consumption rate is independent of the climate states. The figure depicts the optimal consumption rate generated by a recursive DICE implementation with an annual time step and, thus, an annual capital decay structure of the usual form \(\text{(Traeger 2012b)} \). It also abandons the assumption of logarithmic utility, further stacking the cards against ACE’s assumptions. The first two graphs in the figure depict the control rules for DICE-2013’s \(\eta = 1.45 \) (inverse of the intertemporal elasticity of substitution). These two graphs state the optimal consumption rate for the years 2025 and 2205. The third graph in the figure depicts the optimal consumption rate for the lower value \(\eta = 0.66 \) calibrated by the long-run risk literature (see section 4.1).

The qualitative behavior is the same for all graphs in Figure 5. Overall, the figure shows that the optimal consumption rate is largely independent of the climate states (if the vertical axis started at zero the variation of the control rule would be invisible). At current temperature levels, the optimal consumption rate does not depend on the CO\(_2\) concentrations. This result is in accordance with the theoretical result under ACE’s assumption set. However, the optimal consumption rate increases slightly for higher temperatures. It increases by less than a percentage point from no warming to a 3°C warming at low CO\(_2\) concentrations. The increase is lower at higher CO\(_2\) concentrations.

The graphs confirm that also in DICE, and in a model with regular annual capital decay structure and not exactly log-utility, the investment rate is not used as a measure of climate change policy. The rate does not respond to the CO\(_2\) concentration, which is a measure of expected warming. Only once the temperature dependent damages set in, the consumption rate slightly increases and the investment rate goes down. Instead of reflecting climate policy, this (minor) climate dependence of the consumption rate reflects a response to the damages incurred: these damages reduce the cake to be split into investment and consumption, then, a slightly higher fraction goes to consumption. This response is lower when CO\(_2\) concentrations are high: then the social planner expects high temperatures and damages also in the future and is more hesitant to reduce investment.

B Solution of the Linear-in-State Model

B.1 The Linear-in-State Model

To obtain the equivalent linear-in-state-system, I first replace capital \(K_{t+1} \) by logarithmic capital \(k_t \equiv \log K_t \). Second, I replace temperature levels in the atmosphere and the dif-

27The recursive implementation based on the Bellman equation solves for the optimal control rule as a function of the states. Thus, solving the model once immediately delivers the full control surface depicted here. This recursive implementation has a slightly simplified climate change model compared to the original DICE model, but matches the Maggi6.0 model, used also as the DICE benchmark, similarly well.
Figure 5: The graphs analyze the climate (in-)dependence of the optimal consumption rate x^* in the wide-spread DICE model, relying on the control rules of the recursive implementation by Traeger (2012b). The first two graphs assume the DICE-2013 value $\eta = 1.45$, the third graph follows the long-run risk literature with $\eta = \frac{4}{3}$. The blue dot in each graph indicates the expected optimal control and prevailing temperature-CO$_2$ combination along the optimal policy path in the given year.
ferent ocean layers by the transformed exponential temperature states $\tau_{i,t} \equiv \exp(\xi_i T_{i,t})$, $i \in \{1, ..., L\}$. I collected these transformed temperature states in the vector $\tau_t \in \mathbb{R}^L$.

Third, I use the consumption rate $x_t = \frac{G_t}{\tau_t[1-D_t(\xi_t)\eta]}$, rather than absolute consumption, as the consumption-investment control. Only the rate will be separable from the system’s states. Finally, I define $a_t = \log A_{0,t}$ and express utility in terms of the consumption rate

$$u(C_t(x_t)) = \log C_t(x_t) = \log x_t + \log Y_t + \log[1 - D_t(T_t)] = \log x_t + a_t + \kappa k_t + (1 - \kappa - \nu) \log N_{0,t} + \nu \log E_t - \xi_0 \exp[\xi_1 T_t] + \xi_0.$$

The Bellman equation in terms of the transformed state variables is

$$V(k_t, \tau_t, M_t, R_t, t) = \max_{x_t, N_t} \log x_t + a_t + \kappa k_t + (1 - \kappa - \nu) \log N_{0,t} + \nu \log g(E_t(A_t, N_t)), \quad (B.1)$$

and is subject to the following linear equations of motion. The equations of motion for the effective capital stock and the carbon cycle are

$$k_{t+1} = a_t + \kappa k_t + (1 - \kappa - \nu) \log N_{0,t} + \nu \log g(E_t(A_t, N_t)), \quad (B.2)$$

$$M_{t+1} = \Phi M_t + \left(\sum_{i=1}^{l_d} E_{i,t} + E_t^{ex}(\xi) \right) e_1. \quad (B.3)$$

I transform the temperature’s equation of motion (5) into a linear system using equation (6)

$$T_{i,t+1} = \frac{1}{\xi_i} \log \left((1 - \sigma_{i,i-1} - \sigma_{i,i+1}) \exp[\xi_i T_{i,t}] + \sigma_{i,i-1} \exp[\xi_i w_{i-1} T_{i-1,t}] + \sigma_{i,i+1} \exp[\xi_i w_{i+1} T_{i+1,t}] \right), \quad (B.4)$$

the definitions $\sigma_{ii} = 1 - \sigma_{i,i-1} - \sigma_{i,i+1}$, and the requirement $\xi_{i+1} = w_{i+1} \xi_i$. Then the equation is equivalent to

$$\exp(\xi_i T_{i,t+1}) = \sigma_{i,i-1} \exp[\xi_i T_{i,t}] + \sigma_{i,i-1} \exp[\xi_{i-1} T_{i-1,t}] + \sigma_{i,i+1} \exp[\xi_{i+1} T_{i+1,t}] \cdot$$

Using the temperature transformation $\tau_{i,t} = \exp(\xi_i T_{i,t})$ I obtain the linear equations of motion

$$\tau_{i,t+1} = \sigma_{i,i} \tau_{i,t} + \sigma_{i,i-1} \tau_{i-1,t} + \sigma_{i,i+1} \tau_{i+1,t}, \quad i \in \{1, ..., l\},$$

still using $\sigma_{il+1} = 0$ for notational convenience. The first of these equations ($i = 1$) for atmospheric temperature is linear in

$$\tau_{0,t} = \exp[\xi_1 w_{i-1} T_{0,t}] = \exp \left[\frac{s}{\eta} F_t \right] = \exp \left[\frac{\xi_0}{\log 2} \log \frac{M_{1,t} + G_t}{M_{pre}} \right].$$
and has to be linear \(M_{1,t} \) to obtain a linear-in-state system (given linearity of the carbon cycle equations). This linearity requires \(\xi_0 = \frac{\log 2}{s} \) as stated in the proposition. Then, the individual equations of motion for generalized temperature can be collected into the vector equation

\[
\tau_{t+1} = \sigma \tau_t + \sigma_{\text{arc}} \frac{M_{1,t} + G_t}{M_{\text{pre}}} e_1 .
\]

(B.4)

Finally, the equation of motion for the resource stock is

\[
R_{t+1} = R_t - E^d_t .
\]

(B.5)

The underlying constraints are

\[
\sum_{i=0}^{t} N_{i,t} = N_t, \ N_{i,t} \geq 0, \ R_t \geq 0 \text{ and } R_0 \text{ given}.
\]

The present paper assumes that the optimal labor allocation has an interior solution and that the scarce resources are stretched over the infinite time horizon along the optimal path, avoiding boundary value complications.

B.2 Proof of Proposition 1

I start by showing that the affine value function

\[
V(k_t, \tau_t, M_t, R_t, t) = \varphi_k k_t + \varphi_M^\top M_t + \varphi_\tau^\top \tau_t + \varphi_R^\top R_t + \varphi_t
\]

(B.6)

solves the above linear-in-state system. The coefficients \(\varphi \) are the shadow value of the respective state variables, and \(^\top \) denotes the transpose of a vector of shadow values. The coefficient on the resource stock has to be time-dependent: the shadow value of the exhaustible resource increases (endogenously) over time following the Hotelling rule. The controls in the equations of motion (B.2)-(B.5) are additively separated from the states. Therefore, maximizing the right hand side of the resulting Bellman equation delivers optimal control rules that are independent of the state variables. These controls are functions of the shadow values.

In detail, inserting the value function’s trial solution (equation B.6) and the next period
states (equations B.2-B.5) into the (deterministic) Bellmann equation (B.1) delivers

\[
\begin{aligned}
\varphi_k R_t + \varphi_R t + \varphi_t = & \\
\max_{x_t, N_t} \log x_t + \beta \varphi_k \log (1-x_t) + (1 + \beta \varphi_k) \kappa k_t + (1 + \beta \varphi_k) a_t \\
& + (1 + \beta \varphi_k) (1 - \kappa - \nu) \log N_{0,t} \\
& + (1 + \beta \varphi_k) \nu \log g(E_t(A_t, N_t)) \\
& - (1 + \beta \varphi_k) \xi_0 \gamma_{1,t} + (1 + \beta \varphi_k) \xi_0 \\
& + \beta \varphi_M \left(\Phi M_t + \left(\sum_{i=1}^{f_1} \gamma_{i,t} \gamma_{1,t} + E_{i,t}^{exo} \right) e_1 \right) \\
& + \beta \varphi_{\tau} \left(\sigma \gamma_{t} + \sigma_{\text{force}} \frac{M_{0,t} + G_t}{M_{\text{pre}}} e_1 \right) \\
& + \beta \varphi_{R,t+1} (R_t - E_{1,t}) \\
& + \lambda_t (N_t - \sum_{i=0}^{f_1} N_{i,t})
\end{aligned}
\]

Maximizing the right hand side of the Bellman equation over the consumption rate yields

\[
\frac{1}{x} - \beta \varphi_k \frac{1}{1-x} = 0 \quad \Rightarrow \quad x^* = \frac{1}{1 + \beta \varphi_k}, \quad (B.7)
\]

The labor input into the various sector’s depends on the precise assumptions governing the energy sector, i.e., the specification of \(g(E_t(A_t, N_t))\). For a well-defined energy system, I obtain unique solutions as functions of the technology levels in the energy sector and the shadow values of the endogenous state variables \(N_t^* (A_t, \varphi_k, \varphi_M, \varphi_{R,t+1})\). Knowing these solutions is crucial to determine the precise output path and energy transition under a given policy regime. However, the SCC and, thus, the carbon tax do not depend on these solutions.

Inserting the (general) control rules into the maximized Bellman equation delivers the value function coefficients. In detail, I collect terms that depend on the state variables on
the left hand side of the resulting Bellman equation

\[
(\varphi_k - (1 + \beta \varphi_k)\kappa)k_t + \left(\varphi_M^T - \beta \varphi_M^T \Phi - \beta \varphi_{r,1} \frac{\sigma^\text{for}\top}{M_{\text{pre}}} e_1^\top\right) M_t
\]

\[
+ (\varphi_r^T - \beta \varphi_r^T \sigma + (1 + \beta \varphi_k)\xi_0 e_1^T) \tau_t + (\varphi_{R,t} - \beta \varphi_{R,t+1}) R_t
\]

\[
+ \varphi_t = \log x_t^*(\varphi_k) + \beta \varphi_k \log(1 - x_t^*(\varphi_k)) + (1 + \beta \varphi_k)\xi_0 + (1 + \beta \varphi_k)a_t
\]

\[
\quad + (1 + \beta \varphi_k)(1 - \kappa - \nu) \log N_{0,t}^*(A_t, \varphi_k, \varphi_M, \varphi_{R,t+1})
\]

\[
+ (1 + \beta \varphi_k)\nu \log g(E_t(A_t, N_t^*(A_t, \varphi_k, \varphi_M, \varphi_{R,t+1})))
\]

\[
+ \beta \varphi_{M,1} \left(\sum_{i=1}^{t^d} E_{i,t}^d(A_t, N_{i,t}^*(A_t, \varphi_k, \varphi_M, \varphi_{R,t+1})) + E_{t}^{exo}\right)
\]

\[
- \beta \varphi_{R,t+1}^T E_{t}^d(A_t, N_{i,t}^*(A_t, \varphi_k, \varphi_M, \varphi_{R,t+1}))
\]

\[
+ \beta \varphi_{r,1} \frac{\sigma^\text{for}}{M_{\text{pre}}} G_t + \beta \varphi_{t+1} .
\]

The equality holds for all levels of the state variables if and only if the coefficients in front of the state variables vanish, and the evolution of \(\varphi_t \) satisfies the state independent part of the equation. Setting the states’ coefficients to zero yields

\[
\varphi_k - (1 + \beta \varphi_k)\kappa = 0 \quad \Rightarrow \varphi_k = \frac{\kappa}{1 - \beta \kappa} \quad (B.9)
\]

\[
\varphi_M^T - \beta \varphi_M^T \Phi - \beta \varphi_{r,1} \frac{\sigma^\text{for}}{M_{\text{pre}}} e_1^T = 0 \quad \Rightarrow \varphi_M^T = \frac{\beta \varphi_{r,1} \sigma^\text{for}}{M_{\text{pre}}} e_1^T (1 - \beta \Phi)^{-1} \quad (B.10)
\]

\[
\varphi_r^T + (1 + \beta \varphi_k)\xi_0 e_1^T - \beta \varphi_r^T \sigma = 0 \quad \Rightarrow \varphi_r = -\xi_0(1 + \beta \varphi_k) e_1^T (1 - \beta \sigma)^{-1} \quad (B.11)
\]

\[
\varphi_{R,t} - \beta \varphi_{R,t+1} = 0 \quad \Rightarrow \varphi_{R,t} = \beta^t \varphi_{R,0} . \quad (B.12)
\]

The initial values \(\varphi_{R,0}^T \) of the scarce resources depend on the precise evolution of the economy and, thus, depends on assumptions about the energy sector as well as the chosen climate policy. Using the shadow value of log capital in equation \((B.7) \) results in the optimal investment rate \(x = 1 - \beta \kappa \). From line \((B.8) \) onwards, the maximized Bellman equation defines recursively the time-dependent affine part of the value function \(\varphi_t \). Everything discussed in this paper is independent of the process \(\varphi_t \) and only assumes convergence of the value function. For most choices of \(g(E_t(A_t, N_i)) \), the process \(\varphi_t \) has to be solved numerically together with the initial value of shadow price vectors of the scarce resources.

The transformation into the linear-in-state system is unique (up to affine transformations of the states) and the parameter restrictions in Proposition 1 are necessary to obtain linearity. The affine value function solves the system if and only if it is a linear in state system, which completes the proof of Proposition 1.
B.3 Proof of Proposition 2 & Details for Section 3.1

The SCC is the negative of the shadow value of atmospheric carbon expressed in money-measured consumption units. Inserting equation (B.9) for the shadow value of log-capital and (B.11) for the shadow value of atmospheric temperature (first entry of the vector) into equation (B.10) characterizing the shadow value of carbon in the different reservoirs delivers

$$\varphi_{M}^{\top} = -\xi_{0} \left(1 + \beta \frac{\kappa}{1 - \beta \kappa}\right) \left[(1 - \beta \sigma)^{-1}\right]_{1,1} \frac{\beta \sigma^{\text{forc}}}{M_{\text{pre}}} e_{1}^{\top} (1 - \beta \Phi)^{-1}.$$

As a consequence of logarithmic utility, this marginal welfare change translates into a consumption change as

$$d u = 1 \frac{\xi_{1} \exp(\xi_{1} T_{1,t})}{X} d c \Rightarrow d c = (1 - \beta \kappa) d u.$$

Thus, observing that $$(1 + \beta \frac{\kappa}{1 - \beta \kappa}) = \frac{1}{1 - \beta \kappa},$$ the SCC is

$$SCC = -(1 - \beta \kappa)Y_{t} \varphi_{M,1} = Y_{t} \xi_{0} \left[(1 - \beta \sigma)^{-1}\right]_{1,1} \frac{\beta \sigma^{\text{forc}}}{M_{\text{pre}}} \left[(1 - \beta \Phi)^{-1}\right]_{1,1}.$$

The social cost of an atmospheric temperature increase follows similarly from the shadow value of the generalized temperature state $\tau_{1,t}$

$$SC\tau = -(1 - \beta \kappa)Y_{t} \varphi_{\tau,1} = Y_{t} \xi_{0} \left[(1 - \beta \sigma)^{-1}\right]_{1,1} \xi_{1} \exp(\xi_{1} T_{1,t}).$$

A marginal increase in generalized temperature relates to a temperature increase in degree Celsius as $dT_{1,t} = \xi_{1} \exp(\xi_{1} T_{1,t}) dT_{1,t}$ implying the social cost of a temperature increase in degree Celsius of

$$SCT(T_{1,t}) = Y_{t} \xi_{0} \left[(1 - \beta \sigma)^{-1}\right]_{1,1} \xi_{1} \exp(\xi_{1} T_{1,t}).$$

The welfare loss from present temperature increase integrates this formula from 0 to the present temperature.

Pumping a ton of CO$_2$ into layer i, instead of emitting it into the atmosphere, results in the welfare gain

$$\Delta W_{\text{seq}}^{*} = \varphi_{M,i} - \varphi_{M,1} = \beta \varphi_{\tau,1} \sigma^{\text{forc}} \frac{\beta \varphi_{\tau,1} \sigma^{\text{forc}}}{M_{\text{pre}}} \left((1 - \beta \Phi)^{-1}\right)_{1,i} - \left((1 - \beta \Phi)^{-1}\right)_{1,1}. \quad (B.13)$$

The bracket on the right hand side captures the discounted sum of the differences in the amount of carbon prevailing in the atmosphere over time when an emission unit is injected into layer i instead of the atmosphere. This intuition is more easily observed using the Neumann series for the expression:

$$\Delta W_{\text{seq}}^{*} = \frac{\beta \varphi_{\tau,1} \sigma^{pp}}{M_{\text{pre}}} \left(\beta [\Phi_{1,i} - \Phi_{1,1}] + \sum_{n=2}^{\infty} \sum_{j,l} (\beta)^n \Phi_{1,j} (\Phi_{n-2})_{j,l} [\Phi_{l,i} - \Phi_{l,1}]\right).$$
The first term in the brackets captures the difference between carbon flow from the ocean into the atmosphere $\Phi_{1,i}$ and the persistence of carbon in the atmosphere $\Phi_{1,1}$. The second term captures the fraction of carbon reaching the atmosphere after n periods if the carbon initially enters ocean layer i as opposed to entering the atmosphere directly (read right to left). The matrix entry $(\Phi^{n-2})_{j,l}$ captures the overall carbon flow and persistence from layer l to j after $n - 2$ periods. It approaches the stationary distribution given by its (right) eigenvectors (in all columns). In the DICE carbon cycle, the value of sequestering carbon into the intermediate ocean and biosphere corresponding is 41 per ton and the value of pumping carbon into the deep ocean is 56 per ton. Appendix C.3 illustrates equation (B.13) for a two layer carbon cycle and discusses more generally the relation between carbon prices in different reservoirs.

B.4 Proof of Proposition 3

Mass conservation of carbon implies that the columns of Φ add to unity. In consequence, the vector with unit entry in all dimensions is a left and, thus, right eigenvector. The corresponding eigenvalue is one and the determinant of $1 - \beta \Phi$ has the root $1 - \beta$. It follows from Cramer’s rule (or as an application of the Cayley-Hamilton theorem) that the entries of the matrix $(1 - \beta \Phi)^{-1}$ are proportional to $(1 - \beta)^{-1}$.

C Illustrating the “Climate Matrices”

C.1 A Two Layer Carbon Cycle

In the simple and insightful case of two carbon reservoirs the carbon cycle’s transition matrix is

$$\Phi = \begin{pmatrix} 1 - \delta_{\text{Atm} \rightarrow \text{Ocean}} & \delta_{\text{Ocean} \rightarrow \text{Atm}} \\ \delta_{\text{Atm} \rightarrow \text{Ocean}} & 1 - \delta_{\text{Ocean} \rightarrow \text{Atm}} \end{pmatrix},$$

where e.g. $\delta_{\text{Atm} \rightarrow \text{Ocean}}$ characterizes the fraction of carbon in the atmosphere transitioning into the ocean in a given time step. The conservation of carbon implies that both columns add to unity: carbon that does not leave a layer (δ_{\rightarrow}) stays ($1 - \delta_{\rightarrow}$). The shadow value becomes

$$\varphi_{M,1} = \beta \varphi, \sigma^{forc} M_{pre}^{-1} (1 - \beta)^{-1} \left[1 + \beta \frac{\delta_{\text{Atm} \rightarrow \text{Ocean}}}{1 - \beta (1 - \delta_{\text{Ocean} \rightarrow \text{Atm}})} \right]^{-1}.$$

The shadow value becomes less negative if more carbon flows from the atmosphere into the ocean (higher $\delta_{\text{Atm} \rightarrow \text{Ocean}}$). It becomes more negative for a higher persistence of carbon in the ocean (higher $1 - \delta_{\text{Ocean} \rightarrow \text{Atm}}$). These impacts on the SCC are straightforward: the carbon in the ocean is the “good carbon” that does not contribute to the greenhouse effect. In round

Note that the present model does not explicitly model damages from ocean acidification, which would be an interesting and feasible extension.
brackets, I find Proposition 3’s root \((1 - \beta)^{-1}\) that makes the expression so sensitive to a low rate of pure time preference.

A common approximation of atmospheric carbon dynamics is the equation of motion of the early DICE 1994 model. Here, carbon in excess of preindustrial levels decays as in \(M_{1,t+1} = M_{pre} + (1 - \delta_{\text{decay}})(M_{1,t} - M_{pre})\). The shadow value formula becomes

\[
\varphi_{M,1} = \beta \varphi_{\tau,1} \sigma_{\text{forc}} M_{pre}^{-1} (1 - \beta (1 - \delta_{\text{decay}}))^{-1},
\]

which misses the long-run carbon impact and the SCC’s sensitivity to pure time preference.

C.2 A Two Layer Atmosphere-Ocean Temperature System

The two layer example of atmosphere-ocean temperature dynamics has the transition matrix

\[
\sigma = \begin{pmatrix}
1 - \sigma_{\text{up}1} & \sigma_{\text{down}1} & \sigma_{\text{up}2} \\
\sigma_{\text{down}1} & 1 - \sigma_{\text{up}2} & \sigma_{\text{up}1} \\
\sigma_{\text{up}2} & \sigma_{\text{down}1} & 1 - \sigma_{\text{up}1}
\end{pmatrix}
\]

The corresponding term of the SCC (equation 9) takes the form

\[
[(1 - \beta \sigma)^{-1}]_{11} = \left(1 - \beta \left(1 - \sigma_{\text{down}1} - \sigma_{\text{up}1}\right) \frac{\beta \sigma_{\text{down}1} \sigma_{\text{up}1}}{1 - \beta \left(1 - \sigma_{\text{up}2}\right)}\right)^{-1}.
\]

Persistence of the warming in the atmosphere or in the oceans increases the shadow cost. Persistence of warming in the oceans increases the SCC proportional to the terms \(\sigma_{\text{down}1}\) routing the warming into the oceans and \(\sigma_{\text{up}1}\) routing the warming back from the oceans into the atmosphere. The discount factor \(\beta\) accompanies each of these transition coefficients as each of them causes a one period delay. Taking the limit of \(\beta \to 1\) confirms that (an analogue to) Proposition 4 does not hold for the temperature system

\[
\lim_{\beta \to 1} \varphi_{\tau,1} = -\xi_0 (1 + \varphi_k) \left[(1 - \sigma)^{-1}\right]_{11} = -\xi_0 (1 + \varphi_k) \sigma_{\text{up}1}^{-1} \neq \infty.
\]

As the discount rate approaches zero, the transient temperature dynamics characterized by \(\sigma_{\text{down}1}\) and \(\sigma_{\text{up}2}\) becomes irrelevant for evaluation, and only the weight \(\sigma_{\text{up}1}\) reducing the warming persistence below unity contributes.

Extending on the “missing time preference sensitivity” in the general case, note that temperature is an intensive variable: it does not scale proportional to mass or volume (as is the case for the extensive variable carbon). The columns of the matrix \(\sigma\) do not sum to unity. As a consequence of the mean structure in equation (5), however, the rows in

\[\sigma_{\text{up}1}\] note that the carbon cycle lacks the reduction in persistence deriving from the forcing weight \(\sigma_{\text{up}1}\). With this observation, equation (C.2) gives another illustration of the impact of mass conservation in the case of carbon: “\(\sigma_{\text{up}1} \to 0 \Rightarrow \varphi_{\tau,1} \to \infty\)”. Note that in the SCC formula \(\sigma_{\text{up}1}\) cancels, as it simultaneously increases the impact of a carbon change on temperature. This exact cancellation (in the limit \(\beta \to 1\)) is a consequence of the weights \(\sigma_{\text{up}1}\) on forcing and \(1 - \sigma_{\text{up}1}\) on atmospheric temperature summing to unity. The result that a warming pulse has a transitional impact and an emission pulse has a permanent impact on the system is independent of the fact that these weights sum to unity.
the ocean layers’ transition matrix sum to unity. The first row determining next period’s atmospheric temperature sums to a value smaller than unity: it “misses” the weight that the mean places on radiative forcing. The “missing weight” is a consequence of the permanent energy exchange with outer space. Radiative forcing characterizes a flow equilibrium of incoming and outgoing radiation.

C.3 The Price of Carbon and the Different Reservoirs

The carbon price in the atmosphere is immediately connected to its exchange with the remaining reservoirs. I can also express the shadow value of carbon in any reservoir as the following function of the shadow prices in the remaining reservoirs

$$\varphi_{M,i} = \beta \sum_{j \neq i} \varphi_{M,j} \Phi_{j,i} + \frac{\varphi_{\tau,1} \sigma_{up}^i M_{pre}}{1 - \beta \Phi_{i,i}}. \quad (C.3)$$

The carbon price in layer i is the sum of carbon prices in the other layers times the flow coefficient capturing the carbon transition into that other layer (generally only positive for the two adjacent layers). The atmospheric carbon price has as an additional contribution ($1_{i,1}$ denotes the Kronecker delta): the shadow value of the atmospheric temperature increase. Finally, the denominator implies that the carbon price increases over the stated sum according to the persistence $\Phi_{i,i}$ of carbon in that given layer. Equation (C.3) resembles the carbon pricing formula for the carbon decay model discussed in equation (C.1) at the end of section C.1, where the atmospheric carbon persistence is $\Phi_{i,i} = 1 - \delta_{decay}$. The present equation adds the pricing contributions from the other carbon absorbing layers as, unfortunately, the carbon leaving the atmosphere does not decay.

Finally, I illustrate the value of carbon sequestration in equation (B.13) for the case of the two layer carbon cycle introduced in section C.1

$$\Delta W_{seq} = \beta \varphi_{\tau,1} \sigma_{up}^1 M_{pre}^{-1} \left[1 + \beta \delta_{Ocean\rightarrow Atm} - \beta (1 - \delta_{Atm\rightarrow Ocean}) \right]^{-1}.$$

The value of carbon sequestration into the ocean falls in the stated manner in the transition parameter $\delta_{Ocean\rightarrow Atm}$ that captures the carbon diffusion from the ocean back into the atmosphere and increases with the transition parameter $1 - \delta_{Atm\rightarrow Ocean}$ that characterizes the persistence of carbon in the atmosphere.
Part II - Uncertainty

D Equivalence to Epstein-Zin-Weil Utility and Illustration of Risk Aversion

This section presents a quantitative illustration of the adopted risk aversion and derives the equivalence to Epstein-Zin-Weil preferences. I start by showing the equivalence of the Bellman equation (10) to the wide-spread formulation of recursive utility going back to Epstein & Zin (1991) and Weil (1990). Keeping isoelastic risk aggregation and using the logarithmic special case for intertemporal aggregation reflecting GAUVAL’s intertemporal elasticity of unity, the usual formulation reads

\[V_t^* = \exp \left((1 - \beta) \log c_t + \beta \log \left[E_t V_{t+1}^{* \alpha *} \right] \right). \]

(D.1)

Defining \(V_t = \log V_t^* \) and rearranging equation (D.1) delivers

\[V_t = \log c_t + \frac{\beta}{1 - \beta} \log \left[E_t \exp \left((1 - \beta)V_{t+1}^{* \alpha *} \right) \right]. \]

Defining \(\alpha = (1 - \beta)\alpha^* \) and pulling the risk aversion coefficient \(\alpha^* \) of the Epstein-Zin setting to the front of the logarithm and into the exponential yields equation (10) stated in the text.

Figure 6 illustrates the quantitative implications of a choice of risk aversion \(RRA = 1 - \alpha \) in the model. In the baseline, an agent consumes a constant level \(\bar{c} \) in perpetuity. In a coin toss lottery, she loses 5\% of her consumption in the upcoming decade (left) or 25\% (right) in case of tails (probability \(1/2 \)). The graph presents, as a function of her risk aversion \(RRA \), the percentage gain over the baseline that the agent requests if heads comes up to be indifferent between the lottery and the baseline. It is important to realize that these losses and gains are direct consumption changes. The numeric illustrations in the paper are based on the range \(RRA^* = 1 - \alpha^* \in [6, 9.5] \) found in the long-run risk literature. The bounds translate approximately into \(\alpha = (1 - \beta)\alpha^* \in \{1, 1.5\} \) in the present model’s equation (10) and into \(RRA \in \{2, 2.5\} \) in Figure 6.

301 I directly illustrate risk aversion for the choice of \(1 - \alpha \) as opposed to Epstein-Zin’s \(1 - \alpha^* = 1 - \frac{\alpha}{1 - \beta} \). This illustration is independent of time preference. A similar time preference independent illustration of Epstein-Zin’s \(1 - \alpha^* \) would involve a lottery over infinite consumption streams. The argument why \(1 - \alpha^* \) as opposed to \(1 - \alpha \) would be time preference invariant relies on the idea that the lottery payoffs in the current period have less significance for a more patient agent.
Figure 6: The graphs illustrate the relation between the risk aversion RRA = 1 − \alpha and the relative consumption gains and losses that leave an agent indifferent to her original position. With probability 1/2, the agent loses 5\% of her decadal consumption (left) or 25\% (right). The graphs show how much of a relative consumption gain she requires for being indifferent to her initial deterministic position under different degrees of risk aversion.

D.1 Proof of Proposition 4

Inserting an affine trial solution of the value function into the Bellman equation (10) and using the same transformations as in the deterministic case delivers

\[\varphi_k k_t + \varphi^\top_M M_t + \varphi^\top_T T_t + \varphi^\top_{R,t} R_t + \varphi_t + \varphi^\top_I I_t = \]

\[\max_{x_t, N_t} \log x_t + \beta \varphi_k \log (1 - x_t) + (1 + \beta \varphi_k) \kappa k_t + (1 + \beta \varphi_k) a_t \]

\[+ (1 + \beta \varphi_k)(1 - \kappa - \nu) \log N_{0,t} \]

\[+ (1 + \beta \varphi_k) \nu \log g(E_t(A_t, N_t)) \]

\[- (1 + \beta \varphi_k) \xi_0 \tau_{1,t} + (1 + \beta \varphi_k) \xi_0 \]

\[+ \frac{\beta}{\alpha} \log \left(E_t \exp \left[\alpha \left(\varphi_k k_{t+1} + \varphi^\top_M M_{t+1} + \varphi^\top_T T_{t+1} + \varphi^\top_{R,t+1} R_{t+1} + \varphi_{t+1} + \varphi^\top_I I_{t+1} \right) \right] \right). \]
Using assumption \(17\) on the conditional expectation \(X_t = (M_i, \tau_t, I_t)\) with \(z = (\alpha \phi_M, \alpha \phi_T, \alpha \phi_I)\) yields

\[
\phi_k = \frac{1}{1 + \beta \varphi_k} x^* \quad \text{as in the deterministic case and general control rules for the energy sector inputs} \quad N_t^*(A_t, \varphi_k, M, \varphi_{R,t+1}, \varphi_t).
\]

Inserting the optimal control rules and collecting the state-dependent terms (ordered by state) on the left hand side of the equality yields

\[
\begin{align*}
& (\phi_k - (1 + \beta \varphi_k) \kappa) k_t + \sum_{i=1}^{N_t} \left(\varphi_{M,i} - \frac{\beta}{\alpha} b_i^M (\alpha \phi_M, \alpha \phi_T, \alpha \phi_I) \right) M_{i,t} \\
& + \sum_{i=1}^{N_t} \left(\varphi_{r,i} - (1 + \beta \varphi_k) \xi_0 \delta_{i,1} - \frac{\beta}{\alpha} b_i^T (\alpha \phi_M, \alpha \phi_T, \alpha \phi_I) \right) \tau_{i,t} \\
& + (\varphi_{R,t} - \beta \varphi_{R,t+1}) R_t + \varphi_t \\
& + \sum_{i=1}^{N_t} \left(\varphi_{l,i} - \frac{\beta}{\alpha} b_i^L (\alpha \phi_M, \alpha \phi_T, \alpha \phi_I) \right) I_{i,t} \\
& = \log x_t^* (\varphi_k) + \beta \varphi_k \log (1 - x_t^* (\varphi_k)) + (1 + \beta \varphi_k) a_t + (1 + \beta \varphi_k) \xi_0 \\
& + (1 + \beta \varphi_k)(1 - \kappa - \nu) \log N_{0,t}^*(A_t, \varphi_k, M, \varphi_{R,t+1}, \varphi_t) \\
& + (1 + \beta \varphi_k) \nu \log (E_t(A_t, N_t^*(A_t, \varphi_k, M, \varphi_{R,t+1}, \varphi_t))) \\
& - \beta \varphi_t \tau_{R,t+1} - \beta \varphi_t (A_t, N_t^*(A_t, \varphi_k, M, \varphi_{R,t+1}, \varphi_t)) \\
& + \beta \varphi_{R,t+1} + \frac{\beta}{\alpha} a(\alpha \phi_M, \alpha \phi_T, \alpha \phi_I),
\end{align*}
\]

where \((b_1^M, ..., b_{m}^M, b_1^T, ..., b_{l}^T, b_1^L, ..., b_{l}^L_{N-1-m}) = (b_1, ..., b_N)\) and \(\delta_{i,j}\) denotes the Kronecker-delta (one if \(i = j\) and zero otherwise). The trial solution solves the stochastic optimization problem if (and only if) all the coefficients in front of the state variables vanish. The coefficient on log capital results in \(\varphi_k = \frac{\kappa}{1 - \beta \kappa}\) (see as well equation \(B.9\)). The coefficient in front of the resource vector implies Hotelling’s rule \(\varphi_{R,t} = \beta^r \varphi_{R,0}\) (see as well equation \(B.12\)). The time dependent affine shadow value \(\varphi_t\) can be chosen to set the right hand side of the Bellman equation to zero (thereby measuring the state-independent welfare contribution). Thus, the
trial solution solves the dynamic programming problem if and only if the shadow values solve the equations stated in the proposition (eliminating the coefficients of the remaining states).

E Carbon Cycle Uncertainty

E.1 Proof of Proposition 7

In the case of persistent carbon sink shocks, the adjustments in the equations of motion (15) and (22) modify or add the following terms to the Bellman equation (10)

\[\varphi_t \epsilon_t + \varphi_{t+1} + \beta \varphi_c \gamma \epsilon_t + \beta [\varphi_{M_1} - \varphi_{M_2}] \epsilon_t + \frac{\beta}{\alpha} \log \left(E_t \exp \left[\alpha \varphi_c \chi_t \right] \right). \]

It is easily observed that these changes do not affect the optimal investment rate and labor distribution. Matching the coefficients of the flow adjustment \(\epsilon_t \) to make the Bellman equation independent of its level delivers equation (23) for the shadow value \(\varphi_{\epsilon} \). The remaining terms imply \(\varphi_t = \beta \varphi_{t+1} + \frac{1}{\alpha} \log \left(E_t \exp \left[\alpha \beta \varphi_c \chi_t \right] \right) + \text{const}_t \), where \(\text{const}_t \) is a term that is independent of the uncertainty. Given \(\epsilon_0 = 0 \), the welfare difference between the deterministic and the uncertain scenario is determined by the difference of the affine value function contributions

\[\Delta W_{VAR} = V_{0}^{\text{unc}} - V_{0}^{\text{det}} = \varphi_{0}^{\text{unc}} - \varphi_{0}^{\text{det}} = \beta (\varphi_{1}^{\text{unc}} - \varphi_{1}^{\text{det}}) + \frac{\beta}{\alpha} \log \left(E_0 \exp \left[\alpha \varphi_c \chi_0 \right] \right) \]

\[= \sum_{i=0}^{\infty} \frac{\beta^{i+1}}{\alpha} \log \left(E_i \exp \left[\alpha \varphi_c \chi_i \right] \right) + \lim_{i \to \infty} \beta^i (\varphi_{i}^{\text{unc}} - \varphi_{i}^{\text{det}}). \]

For a well-defined dynamic system \(\lim_{i \to \infty} \beta^i (\varphi_{i}^{\text{unc}} - \varphi_{i}^{\text{det}}) = 0 \) and I obtain the general welfare loss equation for non-stationary shocks

\[\Delta W_{VAR} = \frac{1}{\alpha} \sum_{i=0}^{\infty} \beta^{i+1} \log \left[E \exp \left[\alpha \varphi_c \chi_i \right] \right]. \quad (E.1) \]

For a sequence of identically distributed shocks \(\chi_t \), I obtain the welfare cost of uncertainty stated in (24) by evaluating the implied geometric sum in equation (E.1).

E.2 Proof of Proposition 8

In the case of anticipated learning, the new equation of motion for the atmospheric and the biosphere-and-upper-ocean carbon reservoirs take the form

\[M_{1,t+1} = (\Phi M_t) + \sum_{i=1}^{t} E_{i,t} + E_{t}^{\text{exo}} + \epsilon_t + \nu_t, \quad (E.2) \]

\[M_{2,t+1} = (\Phi M_t) - \epsilon_t - \nu_t. \]
I model the learning process based on atmospheric carbon observation. Rearranging equation (E.2), the decision maker derives information on ϵ_t from the realizations

$$\hat{\epsilon}_t = M_{1,t+1} - (\Phi M_t)_1 - \sum_{i=1}^{I} E_{i,t} - E_{i,exo} - \nu_t .$$

The equations of motion for the Bayesian prior’s mean and variance are

$$\mu_{\epsilon,t+1} = \frac{\sigma_{\epsilon,t}^2 \hat{\epsilon}_t + \sigma_{\nu,t}^2 \mu_{\epsilon,t}}{\sigma_{\epsilon,t}^2 + \sigma_{\nu,t}^2} \quad \text{and} \quad \sigma_{\epsilon,t+1}^2 = \frac{\sigma_{\nu,t}^2 \sigma_{\epsilon,t}^2}{\sigma_{\nu,t}^2 + \sigma_{\epsilon,t}^2} .$$

This standard Bayesian updating equation characterizes the posterior mean as a weighted average of the new observation and its prior mean. The weight of the new observation is inversely proportional to the variance of the measurement error (or proportional to its precision). The weight on the prior’s mean is inversely proportional to its variance. The variance of the carbon cycle uncertainty in this Bayesian learning model falls exogenously over time. The smaller the ratio of stochasticity to overall uncertainty $\frac{\sigma_{\nu,t}^2}{\sigma_{\nu,t}^2 + \sigma_{\epsilon,t}^2}$, the faster the learning.

These adjustments in the equations of motion imply modifications of the Bellman equation (10) captured by the terms

$$\varphi_{\mu} \mu_{\epsilon,t} + \varphi_t + \ldots + \beta \varphi_{t+1} + \beta \varphi_{\mu} \frac{\sigma_{\epsilon,t}^2}{\sigma_{\nu,t+1}^2 + \sigma_{\epsilon,t}^2} \mu_{\epsilon,t}$$

$$+ \frac{\beta}{\alpha} \log \left(E_t \exp \left[\alpha \left(\varphi_{M_1} - \varphi_{M_2} + \varphi_{\mu,t} \frac{\sigma_{\epsilon,t}^2}{\sigma_{\nu,t+1}^2 + \sigma_{\epsilon,t}^2} \right) (\epsilon_t + \nu_t) \right] \right) .$$

Matching the coefficients of the informational state $\mu_{\epsilon,t}$ to make the Bellman equation independent of its level delivers equation (26) for the shadow value φ_{μ}. Solving inductively the remaining state-independent terms in equation (E.3) for the welfare difference between the uncertain and the deterministic scenario as in the proof of Proposition 7 delivers the welfare loss

$$\Delta W^{Bayes} = \sum_{t=0}^{\infty} \beta^{t+1} \alpha \frac{\sigma_{\epsilon,t}^2 + \sigma_{\nu,t}^2}{2} \left[\varphi_{M_1} - \varphi_{M_2} + \varphi_{\mu,t} \frac{\sigma_{\epsilon,t}^2}{\sigma_{\nu,t+1}^2 + \sigma_{\epsilon,t}^2} \right]^2$$

$$= \sum_{t=0}^{\infty} \beta^{t+1} \alpha \frac{\sigma_{\epsilon,t}^2 + \sigma_{\nu,t}^2}{2} \left(\varphi_{M_1} - \varphi_{M_2} \right)^2 \left[\frac{(1-\beta)\sigma_{\epsilon,t}^2 + (1-\beta)\sigma_{\nu,t}^2 + \beta \sigma_{\epsilon,t}^2}{(1-\beta)(\sigma_{\epsilon,t}^2 + \sigma_{\nu,t}^2)} \right]^2 ,$$

where I inserted the shadow value φ_{μ} from equation (26). Canceling terms in the numerator of the expression in squared brackets delivers equation (27) in the main text.

32 In principle, the decision-maker could simultaneously learn from observing the carbon concentration in the combined biosphere and upper ocean reservoir. However, whereas the CO$_2$ concentration in the atmosphere is somewhat homogenous, the concentration (partial pressure) in the ocean varies from 250 ppm to 500ppm over regions and seasons, and an annual 1Gt ocean uptake is driven by as little as a 2ppm difference between the concentrations in the atmosphere and the oceans. Thus, measurement errors in the non-atmospheric carbon reservoir are so much larger that an observation-based learning model can comfortably ignore these additional measurements.
Figure 7: shows the evolution of atmospheric carbon under the low and the high specifications of the carbon cycle shock in equation (22), $\sigma_\chi = 10$ Gt on the left and $\sigma_\chi = 50$ Gt on the right. The shock’s persistence of $\gamma_M = 0.997$ is calibrated to Joos et al.’s (2013) model comparison study. The underlying emission scenario is DICE’s business as usual. The deterministic DICE evolution (5 year time steps, “Data”), the deterministic GAUVAL evolution (10 year time steps), and the mean and the median of 1000 uncertain trajectories are hardly distinguishable.

E.3 Quantitative Analysis of Carbon Cycle Uncertainty

The quantification of carbon cycle uncertainty in section 6.3 is an informed guess based on Joos et al.’s (2013) model comparison study and the measurement error implied by the missing sink. Here, I attempt to bound the welfare impact using a somewhat reasonable lower and upper bound for carbon cycle uncertainty. In the VAR model of section 6.1, the left panel of Figure 7 reduces the shock’s standard deviation to 10 Gt per decade. It builds up to a 200Gt standard deviation after about 300 years, which is significantly lower than the 500Gt standard deviation in Joos et al.’s (2013) model comparison study. The resulting welfare loss is approximately 28 billion USD. The right panel of Figure 7 increases the shock’s standard deviation to 50 Gt per decade. It builds up to the suggested 500Gt standard deviation after 125 years, but implies double that value after around 350 years. The resulting welfare loss is approximately 700 billion USD.

In section 6.2, I found a willingness to pay for a stochasticity reduction (or reduction in measurement error) of approximately half a billion USD per Gt decadal standard deviation. If the initial measurement error σ_ν is already down to 5Gt instead of 10Gt per decade, then this willingness to pay is also cut into half to approximately 260 million USD. If the initial measurement error is doubled ($\sigma_\nu = 20$Gt), then the willingness to pay increases to 750 million USD.
F Temperature Uncertainty: Details

F.1 Proof or Proposition 9

In the combined model of persistent epistemological and VAR uncertainty over the temperature increase in section 7.1 the Bellman equation gains the following terms

\[
\sum_{i=1}^{\infty} \varphi_{\kappa,i} \kappa_{i,t} + \varphi_t + \ldots = \ldots + \beta \varphi_{t+1} + \frac{\beta}{\alpha} \log \left(\mathbb{E}_t \exp \left[\alpha \left(\sum_{i=1}^{\infty} \varphi_{\kappa,i} (\gamma_{i\kappa_{i,t}} + \chi_{i,t}) \right) \right] \right).
\]

⇒ \varphi_t + \ldots = \ldots + \beta \varphi_{t+1} + \beta \sum_{i=1}^{\infty} \left[\varphi_{\kappa,i} (\beta \gamma_{i\kappa_{i,t}} - 1) + \beta \frac{(\alpha \varphi_{\kappa_{i,t}})^{i-1}}{\alpha^i} \right] \kappa_{i,t} + \frac{\beta}{\alpha} \log \left(\mathbb{E}_t \exp \left[\alpha \left(\sum_{i=1}^{\infty} \varphi_{\kappa,i} \chi_{i,t}^\tau \right) \right] \right).

Matching the coefficients of the new states \(\kappa_{i,t} , i \in \mathbb{N} \), eliminates the squared bracket in front of the cumulants and delivers the shadow values stated in equation (30). The difference between the uncertain and the deterministic value function’s affine components derives analogously to the proof of Proposition 7 to

\[
\varphi_0^{unc} - \varphi_0^{det} = \beta (\varphi_1^{unc} - \varphi_1^{det}) + \frac{\beta}{\alpha} \log \left(\mathbb{E}_0 \exp \left[\alpha \left(\sum_{i=1}^{\infty} \varphi_{\kappa,i} \chi_{i,t}^\tau \right) \right] \right) = \sum_{i=0}^{\infty} \frac{\beta^{i+1}}{\alpha} \log \left(\mathbb{E}_t \exp \left[\alpha \left(\sum_{i=1}^{\infty} \varphi_{\kappa,i} \chi_{i,t}^\tau \right) \right] \right).
\]

The welfare difference between the uncertain and the deterministic scenario is now comprised of a state (cumulant) dependent part \(\sum_{i=1}^{\infty} \varphi_{\kappa,i} \kappa_{i,t} \) and the affine part of the value functions

\[
\Delta W_{temp} = V_0^{unc} - V_0^{det} = \sum_{i=1}^{\infty} \varphi_{\kappa,i} \kappa_{i,t} + \varphi_0^{unc} - \varphi_0^{det} = \sum_{i=1}^{\infty} \varphi_{\kappa,i} \kappa_{i,t} + \sum_{i=0}^{\infty} \frac{\beta^{i+1}}{\alpha} \log \left(\mathbb{E}_t \exp \left[\alpha \left(\sum_{i=1}^{\infty} \varphi_{\kappa,i} \chi_{i,t}^\tau \right) \right] \right).
\]

In the case of identically distributed shocks over time, the second sum characterizes a geometric series giving rise to the factor \(\frac{\beta}{1-\beta} \), turning the welfare loss into the form stated in equation (29) in the main text.

F.2 Quantitative Analysis of Temperature Uncertainty

Figure 8 illustrates the uncertainty governing the temperature increase from a doubling of the CO\(_2\) concentration, the so-called climate sensitivity. On the left, the figure depicts 20 probability distributions of climate sensitivity derived by different groups and using different methodological approaches (Meinshausen et al. 2009). These probability densities are conditional on the temperature increase not exceeding 10°C. On the right, the figure depicts the
average distribution assigning equal weight to each approach. The distribution is positively skewed and exhibits more weight in the right tail as compared to a (truncated) normal distribution. It serves as the starting point for my numeric estimates of the welfare loss from temperature uncertainty.

This average climate sensitivity distribution on the right of Figure 8 has an expected value of 3.4 C, differing from the common best guess of 3 C employed so far. Focusing on the uncertainty contribution, I shift Meinshausen et al.’s (2009) distribution to the left to conserve the 3 C warming expectation. I denote the implied distribution of the generalized temperature state by $\tilde{\tau}_{\infty}$. By equation (??), the temperature flow uncertainty $\epsilon^\tau = [1 - \sigma]_1,1 \tilde{\tau}_{\infty} - 2 \sigma_{\text{arc}}$ generates this long-run temperature uncertainty under the assumption of a doubling of preindustrial CO$_2$ concentrations. I start by assuming only the VAR model, which corresponds to autoregressive shocks χ_1 to the mean. Such shocks build up over time, and for a doubling of CO$_2$ concentrations a stationary shock $\chi_1 = (1 - \gamma)\epsilon^\tau$ generates the depicted distribution of climate sensitivity. As explained in section ?? the simulation assigns a fraction ζ of the long-run climate sensitivity uncertainty to this shock-based contribution, and the fraction $1 - \zeta$ to the initial epistemological uncertainty. More than two decades of IPCC assessment reports have not tightened the confidence interval on climate sensitivity. Therefore, I assume a persistence of epistemological (and VAR shock) uncertainty of $\gamma = 0.9$ in my “baseline” scenario. In evaluating the welfare loss from temperature uncertainty along the DICE business as usual scenario, I scale the exogenous shocks $\chi_{1,t}$ proportional to the atmospheric CO$_2$ concentrations along the business as usual path (thick black ‘data’ line in Figure ??).

The scaling of the shock is proportional to the CO$_2$ concentration because the shock affects transformed
The SCC’s Response to Uncertainty

Proof of Proposition 5:

The uncertainty in section 5.1 implies the Bellman equation

\[
\varphi_k k_t + \varphi^\top_M M_t + \varphi^\top \tau_t + \varphi^\top_{R,t} R_t + \varphi_t + \varphi_{eM} \epsilon_t^M + \varphi_{e\tau} \epsilon_t^\tau =
\]

\[
\max_{x_t, N_t} \log x_t + \beta \varphi_k (1 - x_t) + (1 + \beta \varphi) \kappa k_t + (1 + \beta \varphi) a_t
\]

\[
+ (1 + \beta \varphi) (1 - \kappa - \nu) \log N_{0,t}
\]

\[
+ (1 + \beta \varphi) \nu \log g(E_t(A_t, N_t))
\]

\[
- (1 + \beta \varphi) \xi_0 \tau_{1,t} + (1 + \beta \varphi) \xi_0
\]

\[
+ \beta \varphi^\top_M \left(\Phi M_t + \left(\sum_{i=1}^{I} E_{i,t} + E_{i,exo}^t \right) e_1 + \epsilon_t^M \right)
\]

\[
+ \beta \varphi^\top \left(\sigma \tau_t + \left(\sigma_{force} \frac{M_{1,t}}{M_{pre}} + \epsilon_t^\tau \right) e_1 \right) + \beta \varphi^\top_{R,t+1} (R_t - E_{i,t})
\]

\[
+ \beta \alpha \log \left(E_t \exp \left[\alpha \left(+ \varphi_t + \frac{M_{1,t}}{M_{pre}} \epsilon_t^M \right) \right] \right)
\]

\[
+ \varphi_{eM} \left(\gamma_M \epsilon_t^M + \sqrt{\frac{M_{1,t}}{M_{pre}} - \eta_M} \chi_t^M \right) + \varphi_{e\tau} \left(\gamma_\tau \epsilon_t^\tau + \sqrt{\tau_{1,t} - \eta_\tau} \chi_t^\tau \right)
\]

\[
\right) + \beta \varphi_{t+1} + \lambda_t (N_t - \sum_{i=0}^{I} N_{i,t}).
\]

Here, the column vector \(\epsilon = (1, -1, 0, ..., 0) \) characterizes that the uncertain carbon flow takes place between the atmosphere and the first non-atmospheric carbon reservoir, in DICE 2013, the joint biosphere and upper-ocean reservoir. All random variables are normally distributed with mean-zero. Evaluating these uncertain contributions to the Bellman equation delivers terms of the form \(\alpha \varphi^2 \sqrt{\sigma^2 + \frac{2}{2}} \).

Maximizing the right hand side of the Bellman equation over the consumption rate still yields \(x^* = \frac{1}{1 + \beta \varphi_k} \), and I write the optimal labor inputs as before as functions of the state’s shadow values and the exogenous technology levels in the energy sector. Inserting the optimal controls back into the Bellman equation and collecting terms involving the states on the left temperature, which translates logarithmically into real temperature, accounting for falling radiative forcing from an additional ton of CO₂.
hand side yields

\[
\left(\varphi_k - (1 + \beta \varphi_k) \kappa \right) k_t + \left(\varphi_T^M - \beta \varphi_M \Phi - \left(\beta \varphi_T \sigma_{forc}^2 M_{pre} + \alpha \beta \varphi_{\sigma M}^2 \sigma_M^2 \right) e_1^T \right) M_t
\]

\[
+ \left(\varphi_T^e + \left((1 + \beta \varphi_k) \xi_0 - \alpha \beta \varphi_{\sigma e}^2 \sigma_e^2 \right) e_1^T \right) \tau_t
\]

\[
+ \left(\varphi_{R,t} - \beta \varphi_{R,t+1} \right) R_t + \left(\varphi_{\sigma M} - \beta \gamma_M \varphi_{\sigma M} - \beta (\varphi_{M,1} - \varphi_{M,2}) \right) e_1^M
\]

\[
+ \left(\varphi_{\sigma e} - \beta \gamma_{\sigma e} - \beta \varphi_{\sigma e,1} \right) e_1^\sigma + \varphi_t
\]

\[
= \log x_t^*(\varphi_k) + \beta \varphi_k \log (1 - x_t^*(\varphi_k)) + (1 + \beta \varphi_k) \xi_0 + \beta \varphi_k \log (A_t)
\]

\[
+ (1 + \beta \varphi_k)(1 - \kappa - \nu) \log N_{0,t}(A_t, \varphi_k, \varphi_M, \varphi_{R,t+1})
\]

\[
+ (1 + \beta \varphi_k) \nu \log g(E_t(A_t, N_t^*(A_t, \varphi_k, \varphi_M, \varphi_{R,t+1})))
\]

\[
+ \beta \varphi_{M,1} \sum_{t=1}^{t=1} E_{i,t}(A_t, N_t^*(A_t, \varphi_k, \varphi_M, \varphi_{R,t+1})) + E_t^{exo}
\]

\[
- \beta \varphi_T^e E_t^{d}(A_t, N_t^*(A_t, \varphi_k, \varphi_M, \varphi_{R,t+1}))
\]

\[
- \alpha \beta \varphi_{\sigma M} \eta_{M} \sigma_M^2 - \alpha \beta \varphi_{\sigma e} \eta_{\sigma e} \sigma_e^2
\]

\[
+ \beta \varphi_{t+1}.
\]

Setting the coefficients of the states to zero changes equations (B.9-B.12) to

\[
\varphi_k = \frac{\kappa}{1 - \beta \kappa}
\]

\[
\varphi_T^M = \left(\frac{\beta \varphi_{t,1} \sigma_{forc}^2}{M_{pre}} + \alpha \beta \frac{\sigma_M^2}{M_{pre}} \varphi_{t M}^2 \right) e_1^T (1 - \beta \Phi)^{-1}
\]

\[
\varphi_T = \left(-\xi_0 (1 + \beta \varphi_k) + \alpha \beta \varphi_{\sigma e}^2 \sigma_e^2 \right) e_1^T (1 - \beta \sigma)^{-1}
\]

\[
\varphi_{R,t} = \beta \varphi_{R,0}.
\]

and adds the shadow price equations

\[
\varphi_{\sigma M} = \frac{\beta}{1 - \beta \gamma_M} (\varphi_{M,1} - \varphi_{M,2})
\]

\[
\varphi_{\sigma e} = \frac{\beta}{1 - \beta \gamma_{\sigma e}} \varphi_{\sigma e,1}.
\]

I define \(c_1 = [(1 - \beta \Phi)^{-1}]_{1,1}\) and \(c_2 = [(1 - \beta \Phi)^{-1}]_{1,2}\). Inserting the first two components of
equation (G.2) into equation (G.3) delivers
\[
\varphi_{\epsilon M} = \frac{\beta}{1 - \beta \gamma M} (c_1 - c_2) (A + B \varphi_{\epsilon M}^2)
\]
\(\equiv C\).

Solving the quadratic equation yields
\[
\varphi_{\epsilon M} = \frac{1 - \sqrt{1 - 4ABC^2}}{2CB},
\]
where the correct sign of the root follows from the deterministic limit where \(B \to 0\). Inserting the result back into equation (G.2) results after some algebra into
\[
\varphi_{M,1} = A \left(\frac{1 - \sqrt{1 - 4ABC^2}}{4ABC^2} \right) c_1.
\]

A Taylor expansion of the term \(\Theta\) in the variable \(x = 4ABC\) around 0 delivers the approximation
\[
\Theta(x) = 2 \frac{1 - \sqrt{1 - x}}{x} \approx 1 + \frac{x}{4} + \frac{x^2}{8} + \frac{5x^3}{64} + \frac{7x^4}{128}.
\]

Note that the same result obtains when expanding the square root expression directly in the standard deviation \(\sigma_M\) (an argument in squares of \(B\) and hence of \(x\)). The same calculation holds for the shadow value of temperature \(\varphi_{\tau,1}\) with \(A \equiv -\xi_0 (1 + \beta \varphi_k), B \equiv \alpha \beta \sigma^2, C = \frac{\beta}{1 - \beta \sigma} [(1 - \beta \sigma)^{-1}]_{1,1}.\)

Using the definitions of \(A, B,\) and \(C\) I find
\[
\varphi_{M,1} = \frac{\beta \varphi_{\tau,1} \sigma_{\text{forc}}}{M_{\text{pre}}} \left(\frac{1 - \sqrt{1 - 4\theta_M^2}}{2\theta_M} \right) [(1 - \beta \Phi)^{-1}]_{1,1} = \varphi_{M,1}^{det} \left(\frac{1 - \sqrt{1 - 4\theta_M^2}}{2\theta_M} \right)
\]
\[
\varphi_{\tau,1} = -\xi_0 (1 + \beta \varphi_k) \left(\frac{1 - \sqrt{1 - 4\theta_{\tau}^2}}{2\theta_{\tau}} \right) [(1 - \beta \sigma)^{-1}]_{1,1} = \varphi_{\tau,1}^{det} \left(\frac{1 - \sqrt{1 - 4\theta_{\tau}^2}}{2\theta_{\tau}} \right)
\]
the superindex \(\text{det}\) denoting the corresponding shadow values under certainty and the parameters
\[
\theta_M = -\alpha \frac{\sigma_M^2}{2} \frac{\beta}{1 - \beta \gamma M} \frac{\beta_2 \varphi_{\tau,1} \sigma_{\text{forc}}}{M_{\text{pre}}^2} \left([(1 - \beta \Phi)^{-1}]_{1,1} - [(1 - \beta \Phi)^{-1}]_{1,2} \right)
\]
\[
= \alpha \beta \frac{\sigma_M^2}{2M_{\text{pre}}} \frac{\beta}{1 - \beta \gamma M} \frac{\beta_2 \varphi_{\tau,1} \sigma_{\text{forc}}}{M_{\text{pre}}} \left([(1 - \beta \Phi)^{-1}]_{1,1} - [(1 - \beta \Phi)^{-1}]_{1,2} \right)
\]
\[
= \alpha \beta \frac{\sigma_M^2}{2M_{\text{pre}}} \frac{\beta}{1 - \beta \gamma M} \Delta \varphi_{M,1}^{det} (\varphi_{\tau,1}) = \alpha \beta \frac{\sigma_M^2}{2M_{\text{pre}}} \frac{\beta}{1 - \beta \gamma M} \Delta \varphi_{M,1}^{det} (\varphi_{\tau,1}) \left(1 - \sqrt{1 - 4\theta_{\tau}^2} \right)
\]
where spelling out the full shadow value expression results in

\[
\theta_M = -\alpha \beta \frac{\sigma^2_M}{2M_{pre}^2} \frac{\beta}{1 - \beta \gamma_M} \frac{\xi_0 \beta}{1 - \beta \kappa} \left[(1 - \beta \sigma)^{-1} \right]_{1,1} \sigma_{forc}^2 \\
\times \left(\left[(1 - \beta \Phi)^{-1} \right]_{1,1} - \left[(1 - \beta \Phi)^{-1} \right]_{1,2} \right) \left(\frac{1 - \sqrt{1 - 4\theta_M}}{2\theta_M} \right)
\]

and

\[
\theta_r = -\alpha \frac{\sigma^2_r}{2} \frac{\beta}{1 - \beta \gamma_r} \frac{\xi_0 \beta}{1 - \beta \kappa} \left[(1 - \beta \sigma)^{-1} \right]_{1,1} = \alpha \beta \frac{\beta}{1 - \beta \gamma_r} \frac{\sigma^2_r}{2} \varphi_{r,1}^{det}.
\]

Using the shadow price of log-capital \(\varphi_k = \frac{\alpha}{1 - \beta \kappa} \) (equation (G.1)) and \(dc = (1 - \beta \kappa)Ydu \) I obtain the SCC under uncertainty

\[
SCC = \frac{\beta Y_I}{M_{pre}} \xi_0 \left[(1 - \beta \sigma)^{-1} \right]_{1,1} \sigma_{forc}^2 \left[(1 - \beta \Phi)^{-1} \right]_{1,1} \left(\frac{1 - \sqrt{1 - 4\theta_M}}{2\theta_M} \right) \left(\frac{1 - \sqrt{1 - 4\theta_r}}{2\theta_r} \right)
\]

\[
\approx SCC^{det} \left(1 + \theta_r + \frac{1}{2} \theta_r^2 + \frac{5}{16} \theta_r^3 \right) \left(1 + \theta_M + \frac{1}{2} \theta_M^2 + \frac{5}{16} \theta_M^3 \right)
\]

Acknowledging that \(\theta_M \) is a function of both \(\sigma_M \) and \(\sigma_r \) implies the Taylor series expansion of the expression

\[
\left(1 - \sqrt{1 - 4a\sigma^2_M} \frac{1 - \sqrt{1 - 4b\sigma^2_r}}{2b\sigma^2_r} \right) \left(1 - \sqrt{1 - 4a\sigma^2_M} \frac{1 - \sqrt{1 - 4b\sigma^2_r}}{2b\sigma^2_r} \right) = \left(1 - \sqrt{1 - 4a\sigma^2_M} \frac{1 - \sqrt{1 - 4b\sigma^2_r}}{2b\sigma^2_r} \right)
\]

\[
= 1 + a\sigma^2_M + b\sigma^2_r + 2(a^2\sigma^2_M + ab\sigma^2_M\sigma^2_r + b^2\sigma^4_r) + O[\sigma^6_M, \sigma^4_M\sigma^2_r, \sigma^2_M\sigma^4_r, \sigma^6_r]
\]

\[
\approx 1 + a\sigma^2_M + b\sigma^2_r + 2(a\sigma^2_M + b\sigma^2_r)^2
\]

\[(G.4)\]

where \(a = \frac{\alpha \beta}{2M_{pre} - 1 - \beta \gamma_M} \Delta \varphi_{det,1}^{M,1} \) and \(b = \frac{\alpha \beta}{2} \frac{\beta}{1 - \beta \gamma_r} \varphi_{r,1}^{det} \). The higher order terms not spelled out in the series expansion are all positive and the approximation in the last line, which adds a factor 2 to the mixed forth order term \((ab\sigma^2_M\sigma^2_r) \), still generally underestimates the full contribution. The approximation is very good for values of \(a\sigma^2_M \) and \(b\sigma^2_r \) up to 10% with the latter resulting in a joint increase of the expression by about 30%. The approximation starts to substantially undervalue the risk contribution for values around 15% (leading to an almost 50% rather than over 60% increase) and becomes unacceptable for values approaching 20%.

The quadratic equation has a real solution only if temperature uncertainty satisfies

\[
1 > 4b\sigma^2_r \Leftrightarrow 1 > 4\alpha \beta \frac{\beta}{1 - \beta \gamma_r} \frac{\sigma^2_r}{2} \varphi_{r,1}^{det} \Leftrightarrow \sigma^2_r < \frac{1 - \beta \gamma_r}{2\alpha \beta^2 \varphi_{r,1}^{det}}.
\]

The largest admitted contribution results from \(\sigma^2_r = \frac{1 - \beta \gamma_r}{2\alpha \beta^2 \varphi_{r,1}^{det}} \) delivering a factor 2.
absence of temperature uncertainty, the carbon cycle uncertainty has to satisfy

\[1 > 4a\sigma_M^2 \Leftrightarrow 1 > 4\alpha\beta \left(\frac{\beta}{1 - \beta\gamma_M} \right) \frac{\sigma_M^2}{2M_{\text{pre}}} \Delta \varphi_{M,1}^{\text{det}} \Leftrightarrow \sigma_M^2 < \frac{\left(1 - \beta\gamma_M \right)M_{\text{pre}}}{2\alpha\beta^2 \Delta \varphi_{M,1}^{\text{det}}} \]

delivering a contribution of 2 if \(\sigma_M^2 = \frac{\left(1 - \beta\gamma_M \right)M_{\text{pre}}}{2\alpha\beta^2 \Delta \varphi_{M,1}^{\text{det}}} \). Under temperature uncertainty, the admissible variance for the carbon cycle variance is lower. The highest overall contribution to the optimal carbon tax from \(\sigma_\tau^2 = \frac{1 - \beta\gamma_\tau}{2\alpha\beta^2 \varphi_{\tau,1}^{\text{det}}} \) and \(\sigma_M^2 = \frac{\left(1 - \beta\gamma_M \right)M_{\text{pre}}}{2\alpha\beta^2 \Delta \varphi_{M,1}^{\text{det}}} \) and delivers a factor 4.

Using the approximation in equation (G.4) for the optimal carbon tax results in the approximation

\[SCC \approx SCC^{\text{det}} \left(1 + \alpha \left(\frac{\beta^2 \Delta \varphi_{M,1}^{\text{det}}}{1 - \beta\gamma_M} \sigma_M^2 + \frac{\beta^2 \varphi_{\tau,1}^{\text{det}}}{1 - \beta\gamma_\tau} \sigma_\tau^2 \right) \right) + 2\alpha^2 \left(\frac{\beta^2 \Delta \varphi_{M,1}^{\text{det}}}{1 - \beta\gamma_M} \sigma_M^2 + \frac{\beta^2 \varphi_{\tau,1}^{\text{det}}}{1 - \beta\gamma_\tau} \sigma_\tau^2 \right)^2 \].

Finally, if temperature in degree Celsius was normally distributed with mean and variance \(\mu_T \) and \(\sigma_\tau^2 \) then generalized temperature would be distributed with the variance \(\sigma_T^2 = \exp(\xi_1^2 \sigma_\tau^2) \) \(\exp(\xi_1^2 \mu_T + \xi_1^2 \sigma_\tau^2) \), an expression that starts out as \(\exp(2\xi_1^2 \mu_T)^2 \sigma_\tau^2 \) for a small temperature variance and grows exponentially in the temperature variance. The initial proportionality factor \(\exp(2\xi_1^2 \mu_T) \xi_1^2 \approx 1 \) for small variance is a good approximation for a variance up to unity and numerically about 0.1 – 0.2 for an expected temperature of 1 – 3 degree Celsius. Given I assume that generalized temperature is normally distributed, the reasoning is only useful as a rule of thumb to translate temperature uncertainty in degree Celsius into the generalized temperature counterpart. It is not a formal translation and, as such, would be inconsistent with the normality assumed on the distribution for \(\tau \).

G.1 The Autoregressive Gamma Model

It is helpful to rewrite the underlying deterministic and, thus, expected equation of motion for the climate variables as

\[
\begin{pmatrix}
M_{1,t+1} \\
\vdots \\
M_{1,t+1} \\
\tau_{1,t+1} \\
\vdots \\
\tau_{1,t+1}
\end{pmatrix} = \begin{pmatrix}
\Phi & 0 \\
\sigma^{\text{arc}}_{\tau,\tau_{\tau,1}} & 0 \cdots 0 \\
0 & 0
\end{pmatrix} \begin{pmatrix}
M_{1,t} \\
\vdots \\
M_{1,t} \\
\tau_{1,t} \\
\vdots \\
\tau_{1,t}
\end{pmatrix} + \begin{pmatrix}
E_t \\
\vdots \\
E_t \\
\sigma^{\text{arc}}_{\tau,\tau_{\tau,1}}G_t \\
\vdots \\
\sigma^{\text{arc}}_{\tau,\tau_{\tau,1}}G_t
\end{pmatrix}
\]
An autoregressive gamma process of the vector valued random variable X_t is obtained as the convolution of a gamma and a Poisson process: there exists a process Z_t such that $X_{t+1}|(Z_{t+1}, X_t)$ is gamma distributed with shape parameter $\nu + Z_{t+1}$ and $Z_{t+1}|X_{t+1}$ is Poisson distributed with parameter $\frac{\rho X_t}{c}$. The parameter ρ governs the autoregression, the parameter c plays the crucial role in the variance and skewness, and the parameter ν is the shape parameter of the resulting long-run forecast, which is gamma distributed. The autoregressive gamma process has the mean $\nu c + \rho X_t$ and the variance $\nu c^2 + 2 c \rho X_t$.

In the multivariate application of the present model, the parameter ρ will correspond to the matrix A (autoregressive part). The parameters c_i will be free and determine the variance of state i, where i can be any of the carbon reservoirs and temperature layers. The parameter $\nu_{M,1}$ is fixed such that $\nu_{M,1} c_{M,1} = \sum_{i=1}^{d} E_{i,t} + E_{t}^{exo}$ for the atmospheric layer of carbon, the parameter $\nu_{\tau,1}$ is fixed such that $\nu_{\tau,1} c_{\tau,1} = \sigma_{\text{force}} \frac{M_{t,i}}{M_{pre}} G_t$ for atmospheric temperature, and all other ν_i are set to zero.

Then, as required, multivariate autoregressive gamma process implies

$$
\mathbb{E}(M_{t+1}|M_t, I_0) = \Phi M_t + \left(\sum_{i=1}^{d} E_{i,t} + E_{t}^{exo} \right) e_1 \quad \text{and} \quad \mathbb{E}(\tau_{t+1}|\tau_t, M_t, I_0) = \sigma \tau_t + \sigma_{\text{force}} \frac{M_{t,i}}{M_{pre}} e_1
$$

as well as the co-variance matrices

$$
\text{Var}(M_{t+1}|M_t, I_0) = c_M \mathbb{I} \left(2 \Phi M_t + \left(\sum_{i=1}^{d} E_{i,t} + E_{t}^{exo} \right) e_1 \right) \quad \text{and} \quad \text{Var}(\tau_{t+1}|\tau_t, M_t, I_0) = c_{\tau} \mathbb{I} \left(2 \sigma \tau_t + 2 \sigma_{\text{force}} \frac{M_{t,i}}{M_{pre}} e_1 + \sigma_{\text{force}} \frac{G_t}{M_{pre}} e_1 \right)
$$

where the off-diagonal entries are zero and $c = \left(c_M \right)$ is the exogenously calibrated vector scaling the variance (and skewness) of the states.

The cumulant generating function of this autoregressive gamma process as defined in Proposition 4 is composed of the affine part

$$
a(z) = -\sum_{i=1}^{d} E_{i,t} + E_{t}^{exo} \frac{c_{M,1}}{c_{M,1}} \log \left(1 - z_{M,1} c_{M,1} \right) - \frac{\sigma_{\text{force}}}{c_{\tau,1}} \frac{G_t}{M_{pre}} \log \left(1 - z_{\tau,1} c_{\tau,1} \right).
$$

and the linear parts

$$
b^M(z_M) = \frac{z_{\tau,1}}{1 - c_{\tau,1} z_{\tau,1}} \sigma_{\text{force}} \frac{M_{t,i}}{M_{pre}} + \sum_{i=1}^{N} \frac{z_{M,i}}{1 - c_{M,i} z_{M,i}} \Phi_i M_t$$

$$
b^\tau(z_\tau) = \sum_{i=1}^{L} \frac{z_{\tau,i}}{1 - c_{\tau,i} z_{\tau,i}} \sigma_i \tau_t.
$$
The resulting equations for the shadow prices of carbon and generalized temperature are

\[
\varphi_{M,i} = \delta_{Kronecker} \beta \frac{\varphi_{\tau,1}}{1 - c_{\tau,1} \alpha \varphi_{\tau,1}} \frac{\sigma^\text{forc}}{M_{pre}} + \beta \sum_{j=1}^{N} \frac{\varphi_{M,i}}{1 - c_{M,i} \alpha \varphi_{M,i}} \Phi_{i,j}
\]

\[
\varphi_{\tau,i} = -\delta_{Kronecker} (1 + \beta \varphi_{\kappa}) \xi_0 + \beta \sum_{j=1}^{L} \frac{\varphi_{\tau,j}}{1 - c_{\tau,j} \alpha \varphi_{\tau,j}} \sigma_{i,j}.
\]

\[(G.5)\]

In the special case of tracking only atmospheric temperature the matrix \(\sigma\) becomes a parameter \(\sigma\) and equation (G.5) simplifies to

\[
\varphi_{\tau} = -(1 + \beta \varphi_{\kappa}) \xi_0 + \beta \frac{\varphi_{\tau}}{1 - c_{\tau} \alpha \varphi_{\tau}} \sigma
\]

\[
\Leftrightarrow \varphi_{\tau} - c_{\tau} \alpha \varphi_{\tau}^2 = -(1 + \beta \varphi_{\kappa}) \xi_0 + (1 + \beta \varphi_{\kappa}) \xi_0 c_{\tau} \alpha \varphi_{\tau} + \beta \varphi_{\tau} \sigma
\]

\[
\Leftrightarrow c_{\tau} \alpha \varphi_{\tau}^2 - (1 - (1 + \beta \varphi_{\kappa}) \xi_0 c_{\tau} \alpha - \beta \sigma) \varphi_{\tau} - (1 + \beta \varphi_{\kappa}) \xi_0 = 0 \quad (G.6)
\]

Assuming \(1 > (1 + \beta \varphi_{\kappa}) \xi_0 c_{\tau} \alpha + \beta \sigma\) let

\[
A = \frac{c_{\tau} \alpha}{-(1 - (1 + \beta \varphi_{\kappa}) \xi_0 c_{\tau} \alpha - \beta \sigma)} > 0
\]

\[
B = \frac{-(1 + \beta \varphi_{\kappa}) \xi_0}{-(1 - (1 + \beta \varphi_{\kappa}) \xi_0 c_{\tau} \alpha - \beta \sigma)} > 0.
\]

Note that \(-B\) is the shadow value \(\varphi_{\tau}^{det}\) under certainty. The assumption assures that the shadow value in the limit of vanishing uncertainty is negative (damage). Then, the shadow value under uncertainty is

\[
\varphi_{\tau} = \frac{-1 \pm \sqrt{1 - 4AB}}{2A} = \frac{-2B}{1 \pm \sqrt{1 - 4AB}}
\]

The first line states the standard solution of the quadratic equation and the second line states the same solution but in a way that numerator and denominator are well-defined as \(A \to 0\). For \(c_{\tau} \to 0\) the solution has to converge to \(-B\), the shadow value under certainty. Thus, the positive root characterizes the economically meaningful solution. Expanding in \(A\) around 0 gives

\[
\varphi_{\tau} = \frac{-1 + \sqrt{1 - 4AB}}{2A} = \frac{-2B}{1 + \sqrt{1 - 4AB}}
\]

\[
= -B - AB^2 - A^2B^3 - 5A^3B^4 - 14A^4B^5 + O[A^5]
\]

\[
= -B(1 + AB + (AB)^2 + 5(AB)^3 + 14(AB)^4) + O[A^5]
\]

\[
= \varphi_{\tau}^{det} (1 + C + C^2 + 5C^3 + 14C^4) + O[C^5],
\]

71
with

\[C = AB = \frac{-c_r \alpha (1 + \beta \varphi) \xi_0}{(1 - (1 + \beta \varphi) \xi_0 c_r \alpha - \beta \sigma)^2} > 0 . \]

The series expansion in \(A \) captures the direct uncertainty dependence in the numerator. However, also the denominator depends on \(c_r \). To expand directly in \(c_r \), I rewrite the quadratic equation (G.6) in the form

\[c_r \alpha \varphi^2_r - (1 - \beta \sigma - (1 + \beta \varphi) \xi_0 c_r \alpha) \varphi_r - (1 + \beta \varphi) \xi_0 = 0 \]

\[\Leftrightarrow c_r a \varphi^2_r + (b_1 + c_r b_2) \varphi_r + c = 0 \]

with

\[a = -\alpha > 0 \]

\[b_1 = 1 - \beta \sigma > 0 \]

\[b_2 = -(1 + \beta \varphi) \xi_0 \alpha > 0 \]

\[c = (1 + \beta \varphi) \xi_0 > 0 . \]

Note that \(ac = b_2 \) and the \(\alpha \varphi^\text{det}_r = \frac{b_2}{b_1} \). The solution for the shadow value is

\[\varphi_r = \frac{-1 + \sqrt{1 - 4 \frac{ac}{b_1 c + c b_2}}}{2 \frac{ac}{b_1 c + c b_2}} = \frac{-2 \frac{ac}{b_1 c + c b_2}}{1 + \sqrt{1 - 4 \frac{c}{b_1 c + c b_2}}^2} \]

\[= -\frac{c}{b_1} \left(1 + \frac{ac - b_1 b_2}{b_1^2} c_r + \frac{2ac - b_1 b_2 (ac - b_1 b_2)}{b_1^4} c_r^2 \right) + O[c_r^3] \]

\[= -\frac{c}{b_1} \left(1 + \frac{(1 - b_1) b_2}{b_1^2} c_r + \frac{2 - b_1 (1 - b_1) b_2^2}{b_1^4} c_r^2 \right) + O[c_r^3] \]

\[= \varphi^\text{det}_r \left(1 + \frac{\beta \sigma}{1 - \beta \sigma} \alpha \varphi^\text{det}_r c_r + \frac{\beta \sigma + (\beta \sigma)^2}{(1 - \beta \sigma)^2} (\alpha \varphi^\text{det}_r c_r)^2 \right) + O[c_r^3] \].

The resulting optimal carbon tax is

\[SCC = SCC^\text{det} \left(1 + \frac{\beta \sigma}{1 - \beta \sigma} \alpha \varphi^\text{det}_r c_r + \frac{\beta \sigma + (\beta \sigma)^2}{(1 - \beta \sigma)^2} (\alpha \varphi^\text{det}_r c_r)^2 \right) + O[c_r^3] \].

The one step ahead variance of atmospheric temperature is

\[\mathbb{V} \text{ar}(\tau_{t+1}|\tau_t, M_t, I_0) = c_r \left(2 \sigma \tau_t + 2 \sigma^{\text{forc}} \frac{M_t}{M_{\text{pre}}} + \sigma^{\text{forc}} \frac{G_t}{M_{\text{pre}}} \right) . \]

In particular, in a world where carbon dioxide emissions are double the pre-industrial level (and no other greenhouse gases), the one step ahead variance of generalized temperature is
$c_r(2\sigma^r + 4\sigma^{forc})$. The long-run distribution of c_r is Gamma with degree of freedom or shape parameter

$$\frac{\sigma^{forc}}{c_r} \frac{M_{1,t} + G_t}{M_{pre}} = \frac{2\sigma^{forc}}{c_r}$$

and scale parameter $\frac{c_r}{1-\sigma}$.