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Abstract
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For of all sad words of tongue or pen, The saddest are these: ‘It might have

been!’

John Greenleaf Whittier

1 Introduction

Ann decides to go to her local Italian restaurant for dinner. Ann whittles down her

choice to either the spaghetti or the risotto. The spaghetti is always the same and

always pretty good - a safe choice. The risotto is risky, sometimes it is excellent but on

occasion it has been bad. Ann suffers from regret. If she chooses the risotto and it turns

out to be bad then she will regret her choice; likewise, if she chooses the spaghetti and

the risotto turns out to be be excellent. If Ann is regret averse, then she will account

for the possibility of these unpleasant regretful experiences when making her decision.

Information plays an integral role in the above story. Ann’s regret is evaluated

as the utility loss experienced from comparing a choice made - that turned out to be

suboptimal - to a foregone alternative. But implicit in this construction is that such

a comparison can always be made. While this may be true for financial assets listed

on an exchange, there are many situations in life where information about unchosen

options is not automatically available, as in the case of our restaurant example as it is

uncommon to order two main courses. In this paper we allow for this possibility, by

allowing for the ex-post information available to a decision maker to depend on choice.

Now suppose the environment is modified slightly in that if Ann orders the spaghetti

then she will never learn the quality of the risotto, but since the spaghetti is always the

same its quality is learned whether it is chosen or not. In this environment there is an

informational asymmetry. Does this matter? The answer is: yes, it can matter because

differing levels of ex-post information matter for behavioural individuals like Ann who

factor in ex-post information into their decision-making. In this new environment,

the spaghetti dish is now more relatively desirable than before because choosing it

completely insures against regret, while the total benefit associated with choosing the

risotto remains unchanged. Depending on the parameters, it is easy to see that ex-post

information structures varying with choice can lead to preference reversals.

People may learn from others. Imagine that Ann has a friend called Barry who

joins her for dinner. If Barry orders the risotto, then ordering the spaghetti is no longer
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a safe haven from regret for Ann as it was when she was dining alone. Previously by

ordering the spaghetti, Ann was completely insured against regret. But now, if Ann

orders spaghetti and learns via Barry’s that the risotto was excellent, then she will

experience regret. In this case, Barry’s choice has imposed an externality on Ann,

because his ordering the risotto Barry will impact Ann’s ex-post information, which in

turn impacts the psychological payoff (i.e., the payoff from the choice made plus the

potential psychological loss due to regret) she associates with a given choice. So, what

on the surface appeared to be two independent decision problems made in isolation is

in fact a behavioural game since each person’s choice can reveal information to others.

In this paper we present a model that captures the Ann and Barry story above.1

While the model can handle environments far richer than this example, we believe

that the simple story captures all the salient features. That is, we start out with the

(obvious) observation that ex-post information matters for regret. We then provide

some formal machinery that allows the analyst to model how the ex-post information

available to a regret averse individual can vary with choice and hence affect optimal

choice.2 Effectively, this requires extending the domain of preferences from ‘objects of

choice’ to ‘objects of choice and their associated information environment’. Our first

result, Theorem 1, shows that when there is full information ex-post information, an

individual with standard preferences and an individual who is regret averse with a linear

regret term are observationally equivalent in their choice behaviour.

We then observe how Theorem 1 breaks down once ex-post information depends on

choice. In our opinion it seems important that experimenters are aware of this fact. A

full classification of precisely how and when ex-post information environments impact

optimal choice is not possible: not all information sets can be ordered. But our second

result, Theorem 2, shows how information sets can be partially ordered. In particular,

we show that ‘more’ ex-post information (formally defined later) is never desirable for

a regret averse decision maker. Ignorance is bliss. In a sense this is obvious: a regret

averse individual ‘zeroes-in’ on the best-performing lottery that is learned about in each

1The example is based on Ariely and Levav (2000). In that paper, the focus was on the differences
in patrons’ orders in two different settings: one where patrons order simultaneously and another where
they order sequentially. Ariely and Levav (2000) noted disparities in order choice (i.e., the propensity
to “coordinate”) depending on the protocol. The model in this paper can explain this finding.

2In fact we allow for the possibility that the ex-post information structure is not fixed. That is,
there may be multiple ex-post informational environments associated with a given choice and there is
a given probability distribution over the different ex-post information structures.

3



state, creating a state-dependent reference point that can only be matched but never

exceeded. So when the number of outcomes that are learned about increases, regret

can only go up.

After this, we allow for the possibility that the ex-post information available de-

pends not only on one’s own choice but also on the choices of others. Precisely, we

consider an environment wherein a large number of regret averse individuals choose

from a common choice set. We show that such an environment is not a series of inde-

pendent decision problems to be analysed in isolation, but is in fact a rich multi-player

behavioural game, that we term the regret game. When the behaviour of others can

impact one’s ex-post information, for certain parameter specifications the regret game

is a game of coordination that admits multiple equilibria; this despite the fact that the

same individuals all have a strictly dominant choice when faced with the same decision

problem in isolation. Theorem 3 is a precise statement of this.

The term ‘asymmetric information’ is typically understood to mean ‘ex-ante asym-

metric information’. The idea is that in advance of some economic interaction, say a

potential exchange, one individual is relatively more informed. The focus is on how the

outcomes in such an incomplete information environment may differ from that wherein

information is complete. The regret game has, in a sense, exactly the opposite core

feature of ‘ex-post asymmetric information’. At the onset everyone possesses the same

information; but after actions have been taken individuals may possess differing levels

of information. A particular type of market failure can emerge: all individuals take a

decision that is collectively suboptimal so as to avoid being the one with more, not less,

information ex-post.

We then move to testing our theory experimentally. In a big-picture sense, we begin

by eliciting certainty equivalents when ex-post information is total and compare it with

the elicited certainty equivalents when ex-post information depends on choice. We

find strong support for Theorem 2 in that many subjects make different choices when

the only difference is the ex-post information supplied. (Theorem 1 ensures that our

mechanism is incentive compatible.) The results from these initial decisions also allow

us to classify participants into those who are regret averse and those who are not,3

3As further discussed in Section 3.1, the idea that the expectation of feedback affects anticipated
regret and thus behaviour has been studied in the psychology literature (Zeelenberg et al., 1996). Yet
ours is the first paper that identifies regret averse individuals by manipulating feedback and using an
incentive-compatible mechanism.
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and to calibrate the parameters used in the second part of the experiment wherein our

participants play a version of the regret game.

More specifically, we run two experiments both using a within-subject design. The

first experiment consists of two parts. In the first part, we elicit participants’ prefer-

ences over a sure amount of money and a risky lottery under two different information

conditions – one where participants learn the risky lottery’s outcome even if they do

not choose it, and one where they do not learn the risky lottery’s outcome unless they

choose it. In the second part of the experiment, participants are matched in pairs and

play the regret game. They must choose between a sure amount of money and a lottery.

If they do not choose the lottery, they will learn its outcome only if their partner chose

the lottery.

We find that, when the regret game has a unique equilibrium in dominant strategies,

the vast majority of participants choose it whether they are regret averse or not. When

the regret game is a game of coordination, regret averse participants try to coordinate

with their partner. This supports our model’s predictions. We observe a positive and

highly significantly impact of beliefs on choice for regret averse participants. When we

focus on the last iteration of the game, the effect is even stronger. We also observe a

positive impact of beliefs on choice for non regret averse participants, but the effect is

smaller and only marginally significant.

These results indicate that regret aversion can drive coordination. However, in

our setting there may have been two additional drivers of coordination: preferences for

conformism (Charness et al., 2017, 2019) and inequity averse preferences (Fehr and

Schmidt, 1999). To eliminate these potential confounds we ran a second experiment.

The second experiment consists of two parts. In the first part, participants choose

between a sure amount of money and a risky lottery, with subjects revealing to us their

certainty equivalent for the risky lottery. Subjects are later asked whether they want

to find out how much they would have earned had they chosen the risky lottery. If they

choose not to find out, they forgo a small amount of money. This procedure allows us

to classify participants into those who are regret averse and those who are not. In the

second part of the experiment, participants are matched in pairs and play a variant of

the regret game: they must choose whether they want to find out the risky lottery’s

outcome or not, but they can avoid finding out only if their partner also decides not to

find out.
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Again we find that regret averse participants try to coordinate with their partner.

The probability that they choose what they think their partner chose is significantly

higher than the probability that they choose the alternative. All regret averse par-

ticipants who believe that their partner chose to avoid information, choose to avoid

information. In contrast, non regret averse participants play the dominant strategy,

and some of them do so under the belief that their partner chose the alternative option.

Thus, once the aforementioned confounds are removed by design, we still find strong

support for our model’s predictions.

Regret aversion dates back to the classic works of Bell (1982) and Loomes and

Sugden (1982). However, these and subsequent studies of regret aversion assume that

ex-post information is total. In order for any behavioural bias to “have bite” after

a decision has been made, information about foregone alternatives is required. We

show how to model behavioural agents with biases that “kick in” after decisions have

been taken, and further to document how choice can vary with uncertainty over what

environment will be faced ex-post (in addition to the standard uncertainty associated

with the outcomes of each choice). While we have focused on regret, we are hopeful

the machinery will be useful to address other biases too.

While a number of papers explore how regret impacts choice in individual decision

problems, the impact of regret averse preferences in strategic environments is extremely

limited. A notable exception is Filiz-Ozbay and Ozbay (2007) who incorporate antici-

pated regret into the preferences of agents partaking in a sealed-bid auction.4 However,

unlike in our paper, individuals in their environment either always find out the outcome

of the foregone alternative or never find out. That is, the informational environment is

set exogenously and does not depend endogenously on the behaviour of individuals. In

our set up, anticipated regret can serve as a coordination device.

In models of social learning (Bikhchandani et al., 1992; Banerjee, 1992), the be-

haviour of others generates information but is payoff irrelevant. Mapping this to the

Ann and Barry story, individuals choose sequentially basing their choice on a weighted

combination of prior belief and the choices of those who went before. In a model of so-

cial interaction (a game), someone else’s choice is payoff relevant, but does not generate

4There is a large literature that studies the connection between dynamics based on “regret min-
imisation” and convergence to Nash equilibria and correlated equilibria (Aumann, 1974). See for
example, Foster and Vohra (1997), Hart and Mas-Colell (2000), and the textbook Cesa-Bianchi and
Lugosi (2006).
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information. The regret game is a behavioural game that, in a sense, lies somewhere be-

tween the two settings above: someone else’s choice is payoff relevant, but only because

it can affect ex-post information and this can be potentially harmful to a behavioural

individual.

The two papers closest to ours are Bénabou (2013) and Cooper and Rege (2011).

Using preferences for late-resolution of uncertainty from Kreps and Porteus (1978),

Bénabou (2013) presents a dynamic model that addresses the harmful issue of “group-

think”. In the model each individual’s payoff depends on the effort level of everyone

(including his own) and the realisation of a random variable. The key feature is the

inclusion of anticipatory utility experienced from thinking about one’s future prospects.

The more positive the forecast, the better for the individual. This allows for multiple

equilibria including, for example, one in which everyone in the population collectively

ignores a negative public signal about the random variable. Such delusions can persist

because individual j’s informational decision and effort choice can affect the risks of

individual i’s psychological payoff, leading i to make a different informational decision

than he otherwise would. In our model by contrast, j’s choice of lottery can impact the

informational environment that i faces, changing i’s psychological payoffs and leading

i to make a different risk-taking decision than he would in isolation.

Cooper and Rege (2011) present a model of “social regret” wherein the regret from a

choice that turned out suboptimal is dampened if others chose the same. An individual

tells himself that his decision could not have been too wrong if many others acted the

same. Misery loves company. This model’s key feature is the belief that an individual

assigns to others choosing an alternative. The more likely another individual is to

choose an alternative, the greater the expected regret from not choosing that alternative.

Results from laboratory experiments confirm their hypothesis that social regret is a

powerful force. In our model, an individual’s choice imposes an externality on others

by changing the information environment that they may face. In Cooper and Rege

(2011), the effect of social regret is magnified by the number of others who make a

different choice, but social regret is less intense when others make the same choice.5

The remainder of the paper is structured as follows. Section 2 presents the model.

Section 3 describes the designs and results of our two experiments. Section 4 concludes.

5A related literature is that on envy or “keeping up with the Joneses”, according to which people
care not only about the absolute value of their own consumption, but also about the average (or per
capita) level of consumption in the economy (Gali, 1994).
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2 The Model

Ex-post information feedback is an integral part of the regret story. If the outcome

of a foregone alternative is never learned, then how can it be regretted? In subsec-

tion 2.1, we build on this insight to formally explore the mechanics of regret aversion.

In effect, a regret averse individual ‘zeroes-in’ on the best-performing lottery in each

state, creating a state-dependent reference point that can only be matched but never

exceeded. Formally, identifying each state of nature by its best-performing lottery gen-

erates a regret-relevant information partition of the state space. However, implicit in

this construction is that alternatives, in particular the best-performing lottery, in each

state will be learned about even if unchosen. We consider how preference reversals may

occur when the regret-relevant partition that is faced depends on choice. Using our

example from Section 1, we imagine that Ann only learns the outcome of the risotto

if she orders it (since the spaghetti dish is a sure thing, it is always known).6 This

asymmetry in ex-post information, and hence regret, increases the relative benefit of

choosing spaghetti as it is a safe haven from regret.

In Subsection 2.2, we extend the environment to one in which the information that

will be learned ex-post is unknown in advance. That is, in addition to the ‘stan-

dard’ uncertainty captured by risky lotteries, there is an additional layer of uncertainty

due to not knowing what regret-relevant information partition will be faced ex-post.

Regret may or may not be experienced. Again using our example, we suppose that

there is a possibility that Ann will learn of the risotto’s quality even if she orders the

spaghetti (perhaps a she will observe someone at a different table order it). Ordering the

spaghetti no longer provides full insurance from regret. In Subsection 2.3 we extend to

an environment where there are many regret averse individuals, and the regret-relevant

information partition that is faced by an individual depends probabilistically upon her

own choice and the choices of others. We suppose that Ann has a friend, Barry, who

joins her for dinner. If Barry orders the risotto, then Barry’s choice means that Ann will

learn the risotto’s quality. In this case, Barry’s behaviour imposes a negative external-

ity on Ann’s ex-post psychological payoff. This is a game in which Barry does not alter

Ann’s payoff directly, but rather he impacts the ex-post informational environment that

Ann will face.

6We emphasise that risk free lotteries therefore play a very important role for regret averse indi-
viduals.
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2.1 The Decision Environment

Let Ω denote a finite state space with typical element given by ω. Uncertainty is

captured by a probability measure P defined on 2Ω, where P[{ω}] > 0 for all ω ∈ Ω.7

There is a choice set, L, containing n risky lotteries, labelled `1, `2, . . . , `n, and a safe

(risk-free) lottery, `S. The outcome of lottery ` in state ω ∈ Ω is denoted by `(ω). For

simplicity we assume that each risky lottery, `i, i = 1, . . . , n, is an independent Bernoulli

random variable with outcome `i occurring with probability 1−pi ∈ (0, 1) and outcome

`i occurring with probability pi. We further assume that there are no payoff ties and

that outcomes are structured such that maxi `i < `S < mini `i. Therefore there are

exactly 2n states in Ω. Note that the risk free lottery, `S, is the lottery with highest

return in only one state; in all other states, at least one of the risky lotteries will

outperform it.8

Let u(·) be a real-valued choiceless utility function defined on L×Ω that satisfies the

usual conditions.9 Let R(`;ω) capture the experienced regret in state ω when lottery

` was chosen; formally it is a function of the difference between ‘choiceless utility from

what turned out to be the best possible decision’ and ‘choiceless utility from the decision

made’.10 The total utility experienced by a decision maker in state ω ∈ Ω, when lottery

` ∈ L is chosen, is denoted by uT and is defined as

uT
(
`(ω)

)
= u

(
`(ω)

)
−R(`;ω) (1)

= u
(
`(ω)

)
− κ
(

max
`′∈L

u(`′(ω))− u(`(ω))
)

where parameter κ (≥ 0) is the coefficient of regret aversion that is assumed to be

state-independent.

A decision maker compares the expected total utility of all the lotteries. Letting E
denote the expectation operator with respect to P, we can state the decision maker’s

7Since Ω is finite there are no technical headaches.
8Since the n risky lotteries have uncorrelated returns, then the probability that the risk-free lottery

is the best-performing lottery equals
∏n

i=1(1− pi). This tends to zero as n gets large.
9The term “choiceless utility” was introduced by Loomes and Sugden (1982). It is so-called as it is

the utility experienced if the decision maker is simply assigned lottery ` and the resulting state is ω
10This is different to the set up of Loomes and Sugden (1982), who view regret as stemming from

pairwise comparisons. Our formulation is based on Sarver (2008), where the comparison lottery is that
which performed best in the realised state.
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optimisation problem as,

max
`∈L

E
[
uT
(
`(ω)

)]
(2)

We now state our first result.

Theorem 1. Suppose the outcome of all lotteries will always be learned ex-post. Then,

for every pair of lotteries `i and `j in L,

E
[(
u(`i(ω)

)]
≥ E

[(
u(`j(ω)

)]
⇐⇒ E

[(
uT (`i(ω)

)]
≥ E

[(
uT (`j(ω)

)]
The proof is in the Appendix. Theorem 1 states that two decision makers, one with

standard preferences (κ = 0) and the other regret averse (κ > 0), are indistinguishable

in their choice behaviour. While the proof is almost immediate, it is important for our

experimental purposes as it ensures that the incentive compatible mechanism that we

use in our experiments, the BDM (Becker et al., 1964), remains incentive compatible

under regret averse preferences. We note that while Theorem 1 is stated for Bernoulli

lotteries, it is easily extended to an environment with more general lotteries provided

everything remains finite.

While interesting, Theorem 1 does require that the outcome of every lottery is

learned ex-post. However, while a lottery’s outcome will always be learned when it is

chosen, the same may not be true for unchosen lotteries. In such environments, what

really matters to a regret averse individual is not the best performing lottery in each

state, but the best performing lottery in each state that is learned about. The standard

regret framework is insufficient for these purposes and needs to be extended to allow for

the possibility that the information available ex-post depends on choice. We develop

such an extension now.

Begin by relabelling the lotteries in such a way that `1 > `2 > `3 > · · · > `n−1 >

`n > `S. Now, labelling lottery S by n + 1, for each i = 1, . . . , n + 1, define the event

F (i) as follows:

F (i) :=

{
ω ∈ Ω

∣∣∣ `i(ω) = max
`j∈L

`j(ω)

}
(3)

In words, event F (i) is the set of states upon which lottery `i is the best-performing.

From our assumptions on the structure of lottery outcomes each F (i) is nonempty and

the collection {F (j)}n+1
j=1 forms a partition of the state space Ω. In words, a regret-

averse individual creates a reference point for every state, where the state-dependent
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reference point is the outcome of the best-performing lottery. Such a reference point

can only be matched but never exceeded.

The partition given in (3) assumes that ex-post information will be total. But what

happens when the ex-post information the decision maker receives depends on choice?

That is, consider the event F (j) but suppose that the environment is changed such that

the outcome of `j in state ω ∈ F (j) is not learned when lottery `k is chosen. Clearly the

state dependent reference point `j(ω) is no longer valid. We assume that it is replaced

with the payoff to the best-performing lottery that is learned about in state ω.

When lottery `k is chosen, we let Ok ⊆ L denote the set of lotteries whose outcomes

are observed.11 Clearly Ok is non empty for all k as the outcome of the chosen lottery is

always learned. To incorporate ex-post information that depends on choice, we amend

(3) above, and define Fk(j) as follows.

Fk(j) :=

{
ω ∈ Ω

∣∣∣ `j(ω) = max
`h∈Ok

`h(ω)

}
(4)

That is, Fk(j) is the set of states where lottery j is the best performing lottery that is

learned about conditional on lottery k being chosen. Unlike the events defined in (3),

it is possible for Fk(j) to be empty. This is despite the fact that every lottery is the

best-performing in at least one state.

So, for every lottery k the decision maker associates a partition of Ω given by

πk = {Fk(j)}`j∈L. We call this the regret relevant information partition associated

with lottery k. Note that when the outcomes of all lotteries can be learned ex-post,

Fk(j) = F (j), for every lottery k.12

We define an ex-post information environment, Π, as the collection of regret relevant

information partitions, one for each lottery. That is, Π = {πk}n+1
k=1 . We now show how

to define a partial order on the collection of all ex-post information environments, that

allows us to rank them in terms of greater ex-post ‘informativeness’.

Definition 1. We say that ex-post information environment Π′ = {π′k}
n+1
k=1 is more

informative than ex-post information environment Π′′ = {π′′k}
n+1
k=1 if for every k =

11Note that this assumes that, conditional on choosing lottery k, the set of lotteries whose outcomes
are learned does not vary with the realised state. While this generalisation is easily incorporated, the
simpler version is sufficient for our purposes.

12In this case the collection {F (i)}n+1
i=1 forms the fundamental regret relevant information partition

that we denote by π0.
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1, . . . , n + 1, regret relevant information partition π′k is as fine as regret relevant infor-

mation partition π′′k , and π′j is strictly finer than π′′j for at least one lottery j.13

We now show that a more informative ex-post information environment is not de-

sirable for a regret averse individual.

Theorem 2. Consider two ex-post information environments Π′ and Π′′ such that Π′ is

more informative than Π′′. Then a regret averse individual prefers ex-post information

environments Π′′ to Π′, in the sense that the expected total utility associated with a

given choice of lottery is never higher in Π′.

Theorem 2 is very intuitive. A regret averse individual constructs a reference point

for every (lottery,state) pair, that is given by the best-performing lottery that is learned

about. A higher reference point is bad as the difference between the reference point

and the chosen lottery’s outcome can only increase, thereby increasing the regret that

is experienced. By the definition of more informativeness, the reference point is never

decreasing and strictly increases for at least one (lottery,state) pair. Since the choiceless

utility experienced does not depend on the ex-post information environment and a more

informative environment brings with it more regret, then such an environment is not

attractive to a regret averse individual.

We now show how to encode the example of Ann deciding between restaurants from

Section 1 into our framework.

Example 1. Regret averse Ann must decide between two pizza-serving restaurants, R

and S. There are two states of the world, ω1 and ω2, with the probability of state ω1

given by p ∈ (0, 1). Restaurant R is risky and its pizza brings payoff `R in state ω1 and

payoff `R in state ω2. Restaurant S is the safe choice, with its pizza bringing payoff `S

in both states. Payoffs are structured such that `R < `S < `R.

There are two information environments Π′ and Π′′. Under Π′, the outcome of both

lotteries is always learned ex post, while under Π′′, the outcome of lottery R is learned

only if chosen. Therefore, we have

Under Π′ : O`R = {`R, `S} ,O`S = {`R, `S} and π′`R = {{ω1} , {ω2}} = π′`S

Under Π′′ : O`R = {`R, `S} ,O`S = {`S} and π′′`R = {{ω1} , {ω2}} 6= π′′`S = {{ω1, ω2}}
13Given a set S and two partitions of S, ρ1 and ρ2, we say that ρ1 is finer than ρ2 if every element

α of ρ1 is a subset of some element of ρ2.
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Let us now consider the expected total utility associated with each choice of lottery.

That is, we evaluate uT (`,Π), where we note the explicit dependence on the information

environment Π. We have

uT (`R,Π
′) = p

(
u(`R)− κ

(
u(`R)− u(`S)

))
+(1− p)

(
u(`R)

)
uT (`R,Π

′) = pu(`S) +(1− p)
(
u(`S)− κ

(
u(`S)− u(`R)

))
while

uT (`R,Π
′′) = p

(
u(`R)− κ

(
u(`R)− u(`S)

))
+(1− p)

(
u(`R)

)
uT (`R,Π

′′) = pu(`S) +(1− p)u(`S)

where we note that under information environment Π′′, by choosing `S Ann is completely

insured against regret. Note that S has become relatively more attractive to Ann in

Π′′.

We conclude this section by reiterating the main observation. Models of regret

aversion assume that the decision maker identifies each state by its best-performing

lottery. But this is not always possible. When this is the case the regret averse decision

maker identifies each state by the best-performing lottery that is learned about. Finally,

what lottery outcomes are learned and what are not may be choice dependent. It then

immediately follows that varying the information environment can impact (optimal)

choice. In the next subsection we will allow for the possibility that multiple regret-

relevant information partitions can be associated with each lottery choice. That is,

there will be further uncertainty about what ex-post information environment will be

faced.

2.2 Uncertainty Over the Ex-post Information Structure

In this section we allow for the possibility that the outcomes of unchosen lotteries may

be learned about or may not be learned about. That is, there may be more than one

regret relevant partition associated with a lottery choice. To illustrate the effect this

can have on optimal choice we limit attention to the environment where the choice

set L only contains one risky lottery `r and the risk free lottery `S. With only one
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risky lottery the state space is {ω1, ω2}, where ω1 and payoff ¯̀
r occur with probability

p ∈ (0, 1), and ω2 and payoff `r occur with probability 1− p.
The risk-free lottery has the property that its outcome will always be known whether

it was chosen or not. The same need not be true of the risky lottery. We let q ∈ [0, 1]

be the probability that an agent learns the outcome of the risky lottery, `r, conditional

on choosing the safe lottery, `S. That is, conditional on choosing the risk-free lottery,

with probability q the individual faces regret relevant partition π0 = {F (S), F (`r)},
and with probability 1− q he faces partition π′S = {F ′(S)} where F ′(S) = Ω. Utility is

then given by

uT (`S, ω, q) =

{
u(`S)− qκ

(
u(`r)− u(`S)

)
, if ω = ω1

u(`S), if ω = ω2

(5)

and

uT (`r, ω, q) =

{
u(`r), if ω = ω1

u(`r)− κ
(
u(`S)− u(`r)

)
, if ω = ω2

(6)

Both the risky lottery, `r, and the risk-free lottery, `S, bring with them a benefit and

a cost. The benefit is the direct choiceless utility associated with each; the cost is the

psychological penalty that may be incurred in the event your choice is not optimal in

the realised state. For the risky lottery, `r, both the expected benefit and expected cost

are fixed. For the risk-free lottery, `S, the expected benefit is fixed but the expected

cost is not. It may or may not be incurred.

Using (5) and (6), it is simple to calculate when the risky option is preferable to a

regret averse individual. To make things as clear as possible, we normalise the choiceless

utility function u so that u(`r) = 0 and u(`S) = 1. With this, the condition for the

risky lottery `r to be preferred to the risk-free lottery `S reduces to

u(`r) ≥
1

p

(
1 + κ

(
1− p(1− q)

)
1 + qκ

)
(7)

Expression (7) is bookended by two important cases. When q = 1 the decision

maker will learn the outcome of the risky option no matter what. Here, there is no
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distortion to the threshold rule relative to standard preferences, in that,

u(`r) ≥
1

p
(8)

When q = 0 however, the decision maker knows that he will definitely not learn the

outcome of the risky option unless he opts for it. Then (7) becomes,

u(`r) ≥
1

p

(
1 + κ(1− p)

)
(9)

Given that κ > 0 and p ∈ (0, 1), the inequality in (9) is a more demanding condition

on the risky lottery `r than that in (8). That is, when a regret averse decision maker

will certainly not find out the realisation of the risky option without choosing it, he

requires it to have a more desirable payoff distribution. (It can be checked that the

RHS of expression in (7) is strictly decreasing in q over the interval [0, 1].)

The reason for the discrepancy above is that the risk-free lottery can provide in-

surance against regret. When q = 0, the risk-free lottery provides complete insurance

against regret. There is complete asymmetry in anticipated regret: if the decision maker

chooses the risky option, he knows he will be able to make an ex-post comparison and

feel regret if the risky option is not successful, whereas if he chooses the risk-free lot-

tery, he knows he will not be able to make such a comparison. Because of the insurance

against regret offered by the risk-free lottery, the outcome of the risky lottery in the

event of a success must be high enough to tempt the decision maker away from the

security of the risk-free lottery. Ignorance is bliss. On the other hand, when q = 1,

the risk-free lottery offers no insurance against regret. The decision maker knows he

will learn the outcome of the risky lottery whether he chooses it or not. The regret

considerations are symmetric and cancel each other out, and the individual’s condition

is the same as if he were regret neutral.

Intuitively, the benefit that the risky lottery must yield in order to be chosen becomes

lower as q increases due to the reduction in anticipated regret. As q decreases (i.e., the

likelihood of making an ex-post comparison in the case the risky option is not chosen

reduces) the agent is increasingly - from an ex-ante perspective - insured against regret.

And because of this insurance against potential regret, the risky lottery’s outcome must

increase to tempt the agent away from the safe option.

15



In the next subsection, we extend the setting to one with multiple regret averse

agents, and we suppose that q is endogenously determined by the choices of others. In

particular, we assume that q is increasing in the number of other agents who choose the

risky lottery. This seemingly minor amendment turns a series of single-person decision

problems into a multi-player behavioural game.

2.3 Strategic Setting: The Regret Game

2.3.1 The set up

We stick with the 2-state 2-lottery environment from the previous subsection. Suppose

now that there are N decision makers, each of whom is regret averse, i.e., with prefer-

ences represented by uT with κ > 0. The key modelling feature we introduce is that an

individual’s likelihood of learning about the risky outcome conditional on choosing the

risk-free lottery is a function of the behaviour of others.

To capture the above, we define a symmetric N -player (simultaneous-move) be-

havioural game with common action set A and common utility function uT .14 We

identify the action set A with the 2-element choice set L = {`r, `S}. Each player i,

chooses an action ai ∈ A = {`r, `S}, and has utility function uTi : A × {ω1, ω2} → R,

where A :=
∏n

j=1Aj, with typical element a = (a1, . . . , an). From player i’s perspec-

tive, a pure action profile a ∈ A can be viewed as (ai, a−i), so that (âi, a−i) will refer

to the profile (a1, . . . , ai−1, âi, ai+1, . . . , an), i.e., the action profile a with âi replacing

ai. The utility function of agent i is as defined in (5) and (6) save one difference: the

probability that i learns the outcome of the risky lottery when it is not chosen, denoted

qi, depends on the behaviour of the other agents. Formally,

uTi
(
(`S, a−i), ω

)
=

{
u(`S)− qi(a−i)κ

(
u(`r)− u(`S)

)
, if ω = ω1

u(`S), if ω = ω2

(10)

and

uTi
(
(`r, a−i), ω

)
=

{
u(`r), if ω = ω1

u(`r)− κ
(
u(`S)− u(`r)

)
, if ω = ω2

(11)

where qi(a−i) is assumed to be strictly increasing in the number of others that choose

14This is an abuse of notation as the domain on which utility is defined will now be extended to
include the behaviour of others.
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`r.
15 That is, abusing notation somewhat, we let |a| = |(ai, a−i)| := # {j 6= i : aj = `r}.

Then for any two profiles a′ and a′′ we have qi(|a′|) > qi(|a′′|) if and only if |a′−i| > |a′′−i|.
Finally, we assume that q(0) = 0 and q(N − 1) = 1.

We emphasise that, while player i’s utility depends on the choices of everyone, and

hence the set up is a strategic game, the dependence is not direct. Rather it manifests

through the likelihood that player j’s choice of lottery will impact player i’s ex-post

regret relevant partition. It is individual j’s risk taking that can generate information

for individual i, in turn altering i’s psychological payoffs, in turn altering the relative

benefits of each choice. We now characterise the set of equilibria to this set up: showing

how individual psychological motives can lead to socially interdependent decisions.

2.3.2 Equilibria

The above defines the Regret Game. There are three classes of the game, depending

upon the parameters. When u(`r) < 1/p, it is a dominant choice for each player to

choose the safe lottery `S. Similarly, when u(`r) >
1
p

(1 + κ(1− p)), choosing the risky

lottery `r is the dominant action. For intermediate values of u(`r) however, the game

is one of coordination and has two pure-strategy Nash equilibria: all players choose `S,

and all players choose `r.
16 Theorem 3 below states this formally.

Theorem 3. In the regret game,

1. When u(`r) < 1
p
, uniform adoption of the risk-free lottery, `S, is the unique

(dominant) pure strategy Nash equilibrium.

2. When u(`r) >
1
p

(1 + κ(1− p)), uniform adoption of the risky lottery, `r, is the

unique (dominant) pure strategy Nash equilibrium.

3. When u(`r) ∈
[

1
p
, 1
p

(1 + κ(1− p))
]
, uniform adoption of the risk-free lottery, `S,

is a pure strategy Nash equilibrium and uniform adoption of the risky lottery, `r,

is a pure strategy Nash equilibrium

15Assuming that qi is increasing seems natural to us. The more individuals who choose the risky lot-
tery, the harder it ought be not to learn about its performance ex-post. But while it seems implausible
that the function qi would be decreasing at any point, we leave its precise functional form unspecified.
One can imagine settings in which qi is linear, concave, and convex. One can even envisage settings
where qi is step function, in that the outcome of `r cannot be avoided once enough individuals have
chosen it.

16There is also a completely mixed strategy equilibrium but we ignore it as it is very unstable.
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Theorem 3 can be understood as follows. While the risky lottery, `r, brings a guar-

anteed utility, for every (other) individual who chooses the risky lottery, the expected

utility associated with the risk-free lottery is decreasing. The reason for this being that

the likelihood of learning about the alternative, and hence experiencing regret, is going

up. Thus, for the parameters of case 3, we have a slightly unusual coordination game

in that the number of others who choose `r is decreasing the associated net utility of

choosing `S without improving the net utility of choosing `r.

2.3.3 Welfare and equilibrium selection

It is interesting to compare the (common) expected utility levels at each equilibrium in

case 3. From (10) and (11) we can compute that uniform adoption of the risky lottery,

`r, is Pareto optimal if and only if u(`r) ≥ 1
p

(
1 + κ(1 − p)

)
. But this is precisely the

threshold at which individuals would always choose the risky lottery in any case. Thus,

for parameters such that the regret game is a coordination game (case 3), coordinating

on the risk-free lottery is Pareto-optimal (and always preferred ex-ante).

There is a large literature addressing the tension that exists between the multi-

ple equilibria in coordination games. The most commonly studied environment is a

large-population binary-action game (e.g., the Stag Hunt) where the Pareto efficient

equilibrium does not coincide with the safe risk-dominant equilibrium.17 Existing equi-

librium selection techniques - be they evolutionary like stochastic stability (Kandori

et al., 1993; Young, 1993) or higher-order belief-based like global games (Carlsson and

Damme, 1993; Morris and Shin, 2003) - favour the equilibrium that is more difficult to

destabilise (i.e., the risk-dominant one). For our regret game, simple algebra shows that

q ≥ q? = 1/2 is the threshold at which the risky lottery becomes most desirable. But

if we imagine a steep specification of q (in that qi(|a|) ≈ 1 when |a| ≥ 1), then uniform

adoption of the risky lottery would be the prediction. But that means the regret game

has the quite curious property that the risk-free Pareto dominant outcome need not be

risk-dominant (Harsanyi and Selten, 1988).

17Probably the best known experimental test of the efficiency vs safety issue is (Van Huyck et al.,
1990) who study human behaviour in the minimum effort game, of which the Stag Hunt is a simple
version.
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2.3.4 Extensions

In what follows, we briefly describe some extensions of our model. Further details can

be found in Appendix B.

In the regret game above we have assumed that everyone is regret averse. However,

in reality it is possible that only some proportion of a population are regret averse

(κ > 0) and the remainder are regret neutral (κ = 0). The first extension in Appendix

B.1 considers the case in which some proportion of the population are similarly regret

averse and the remaining proportion are regret neutral. The preferences over lotteries

for regret neutral individuals are fixed no matter the information feedback. So these

individuals always choose the lottery with the highest expected (choiceless) utility.

When the environment becomes a game these individuals have a dominant strategy.

The presence of regret neutral individuals makes it more difficult for the regret averse

individuals to coordinate on the other lottery. The reason is that the regret neutral

individuals will always choose one of the lotteries.

The second extension in Appendix B.1 considers the more general case where all

individuals may have a different coefficient of regret aversion. Ex-ante, the regret

coefficients are unknown, with everyone’s coefficient being a random draw from some

distribution over [0,∞). This generates a rich Bayesian game. In this sense, the first

extension above is is one of many possible realisations of the strategic environment.

Individuals who are not regret averse may be regret neutral or rejoice lovers. Rejoice

is defined as the psychological gain that a decision maker – so called rejoice lover –

experiences when the option chosen turns out to be better than the unchosen option.

Appendix B.2 describes how rejoice can be incorporated in our model. When a rejoice

lover does not learn the lottery’s outcome, he will be more likely to choose the lottery,

as he wants to know whether his choice was the best. It is easy to see that, while in

equilibrium regret averse players will coordinate, rejoice lovers will anti-coordinate.

3 Experiments

We test the predictions of a two-player variant of the regret game through two exper-

iments. Both experiments use a within-subject design and have two main goals. The

first goal is identifying the participants who are regret averse. The second goal is testing

whether regret averse participants behave as our model predicts. The two experiments
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achieve these goals through two different designs, with the second experiment serving

as a robustness check of the results by eliminating some confounds that may have been

present in the first experiment.

3.1 Experiment 1

3.1.1 Design

Overview The experiment consists of two parts. In the first part we elicit partici-

pants’ preferences over a riskless option (a sure amount of money) and a risky option

(a lottery) under two different information environments. In the first environment par-

ticipants learn the risky lottery’s outcome even if they do not choose it, while in the

second environment they do not learn the risky lottery’s outcome unless chosen. These

initial decisions allow us to classify participants into regret averse types and non regret

averse types and to calibrate the parameters of the second part of the experiment. We

also ask an additional question as a robustness check – to verify whether participants

behave according to the type they were classified as. In the second part of the exper-

iment, participants are matched in pairs and play the regret game. They must choose

between a sure amount of money and a risky lottery. If they do not choose the lottery,

they will learn its outcome only if their partner chose the lottery.

Part 1 In the first part of the experiment, Decisions 1 through 3, participants have

to choose between a sure amount (e5 with certainty) and a risky lottery (ex with 50%

probability and e0 with 50% probability) under different conditions.

The standard incentive compatible mechanism for eliciting lottery thresholds is the

BDM (Becker et al., 1964), and by Theorem 1 the BDM remains incentive compat-

ible for regret averse individuals. We ask each participant to state the smallest lot-

tery outcome x (henceforth lottery threshold) such that they prefer playing the lot-

tery than receiving the sure amount. They can choose any number from the list

{5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}. After they submit their choice, the computer ran-

domly picks a number from the same list, independently drawn for each participant.

All the numbers are equally likely. If the number picked by the computer is smaller

than the number x chosen by the participant, the sure amount is the implemented

option, i.e., the participant receives e5. If the number picked by the computer is equal
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or larger than the number x chosen by the participant, the lottery is the implemented

option, i.e., the participant receives the number picked by the computer in e with 50%

probability and e0 otherwise.18

The above is common to Decisions 1 and 2 (and, as discussed later, to Decision

3). The difference between the decisions is seen in the information feedback provided

to the participants who do not choose the lottery. Labelling the number x chosen by

participants in Decision 1 as x1 and that chosen by participants in Decision 2 as x2, we

have the following.

Decision 1. If a participant’s choice, x1, results in the sure amount being the

implemented option, they are nevertheless informed about the lottery’s outcome.

Decision 2. If a participant’s choice, x2, results in the sure amount being the

implemented option, they are not informed about the lottery’s outcome.

After each of the first two decisions, participants learn the number randomly picked

by the computer, and thus whether the implemented option is the lottery or the sure

amount. In the latter case, the information provided varies across the two decisions as

described above.

Participants who choose a higher lottery threshold in Decision 2 (no information)

than in Decision 1 (information), i.e., x2 > x1, are classified as regret averse. The sure

amount is more appealing to them when feedback about the lottery is withheld, as it

allows them to remain ignorant about the outcome of the unchosen option. Participants

who choose the same or a lower lottery threshold in Decision 2 than in Decision 1, i.e.,

x2 ≤ x1, are classified as non regret averse. These participants can be further classified

in two categories. Participants who choose x2 = x1 are regret neutral, as they do not

react to feedback about the unchosen option. Participants who choose x2 < x1 are

rejoice lovers. The sure amount is less appealing to them when feedback about the

lottery is withheld, as they cannot learn the lottery’s outcome unless they choose it.19

To the best of our knowledge, our paper is the first to classify participants into

regret averse and non regret averse types by using an incentive-compatible mechanism

18Whether the lottery is successful or not is perfectly correlated across participants.
19Since we use a within-subject design, we are potentially exposed to the risk of experimenter demand

effect. However, we believe that it is very difficult for participants to figure out what the experimenter
is trying to achieve through Decisions 1 and 2, and the heterogeneity in participants’ responses seems
to support our belief.
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under different feedback conditions. However, the idea that the expectation of feedback

affects anticipated regret and thus the behaviour of regret averse individuals is has been

documented by psychologists. For example, Zeelenberg et al. (1996) show that, when

faced with the choice between two equally attractive gambles, most participants chose

the gamble without feedback and thus ex-post comparisons of outcomes.20

By classifying participants into types on the basis of a single decision, we are exposed

to the risk of measurement error. However, if multiple decisions had been used to classify

participants into types, we would have faced two other issues. First, earlier decisions

may have affected later decisions, and varying the order to control for any possible

order effect may not have been possible. Second, by going through multiple, similar

questions participants may have felt bored and answered later question less accurately.

In our second experiment, we use an alternative method to classify participants into

types. While the new classification is still based on one decision only, by employing a

different method it can serve as a robustness check for the classification into types used

in our first experiment.

Finally, we ask participants an additional question (Decision 3) to verify whether

they behave according to the type they were classified as through Decisions 1 and

2. Each participant is randomly paired with another participant and faces the same

decision as in Decisions 1 and 2, with one difference: the feedback provided to the

participants who does not play the lottery. If the number x chosen by a participant in

Decision 3, labelled x3, results in the sure amount being the implemented option, they

will be informed about the lottery’s outcome only if their partner played the lottery.

This means that if their partner played the lottery, participants are under the same

information environment as in Decision 1, where they learn the lottery’s outcome. If

their partner did not play the lottery, they are under the same information environment

as in Decision 2, where they do not learn the lottery’s outcome unless they play it.

Participants are also asked what they believe is the lottery threshold x chosen by

their partner in Decision 3. If their guess is within one of the number chosen by their

partner, then they receive additional e1 at the end of the study (provided that Decision

3 is randomly selected for payment).

20For a different method to classify subjects into regret averse and not, see Bleichrodt et al. (2010).
Similarly to our design, Imas et al. (2021) compare participants’ valuations for identical lotteries under
two different feedback scenarios. However, they use a between-subject design and it is not possible to
back out the number of regret averse individuals from their data.
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As with Decisions 1 and 2, in Decision 3 participants are informed as to the number

randomly picked by the computer, and thus whether the implemented option is the

lottery or the sure amount.

Part 2 In the second part of the experiment (Decision 4 onwards), participants play

the regret game described in Section 2.3. They must choose between a sure amount

(earning e5 with certainty) and a lottery (earning “an amount” in e with 50% probabil-

ity and e0 with 50% probability). Differently from the previous part of the experiment,

the lottery’s outcome in the good state is given and, for each participant, it is deter-

mined using the lottery thresholds x1 and x2 elicited in Decisions 1 and 2.

The sure amount is known regardless of the decision made. If participants choose

the sure amount, they learn the lottery’s outcome only if their partner chooses the

lottery. This implies that if participants choose the lottery, they experience regret if

the bad state materialises, whereas if they choose the sure amount, they experience

regret if the good state materialises and they learn that.

This setting is identical in all the decisions in the second part of the experiment.

However there are three type of decisions that differ in the amount the lottery yields

in the good state corresponding to the three parts of the parameter space classified

in Theorem 3. Two types of decisions are designed to test the regret game when it

has a dominant strategy – in one the dominant strategy is the sure amount and in the

other the dominant strategy is the lottery. The third type of decision is designed to

test the regret game when it is a game of coordination. More interestingly, in each of

these three decisions the amount that the lottery yields in the good state is individual-

specific: it depends on a participant’s choices in Decisions 1 and 2. This ensures that

each participant, despite potential heterogeneity in their (regret averse) preferences,

plays the regret game in its three key cases.

Decision 4. The lottery’s outcome in the good state is smaller than the amount a

participant chose in Decision 1, namely x1 − 2. This allows us to test the prediction of

the regret game when choosing the sure amount is the unique equilibrium in dominant

strategies.

Decision 5. The lottery’s outcome in the good state is bigger than the amount a

participant chose in Decision 2, namely x2 + 2. This allows us to test the prediction of
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the regret game when choosing the lottery is the unique dominant strategy equilibrium.

Decision 6. The lottery’s outcome in the good state is in between the amount chosen

in Decision 1 and that chosen in Decision 2, namely x1+x2

2
. This allows us to test the

prediction of the regret game when it is a game of coordination.

Decision 6, being the most interesting case of the regret game and thus the core

part of the experiment, is repeated 20 times (Decisions 6 to 25).

Pairs are rematched before Decisions 4, 5 and 6. This means that a participant’s

partner could be the same as before or a different one. To mitigate potential dependence

resulting from the repeated interaction of participants, we use matching groups of size

4. That is, for each participant, there are three potential participants who can be

randomly assigned to them. In Decision 6 and its repetitions, participants keep the

same partner.

From Decision 4 onwards, we elicit first order beliefs. We ask participants to guess

whether their partner chose the sure amount of money or the risky lottery. If they

guess their partner’s choice, they receive additional e1 at the end of the study, if that

decision is randomly selected for payment.

After the last iteration of Decision 6, i.e., Decision 25, the participants are asked

some non-incentivised questions: the Regret Scale (Schwartz et al., 2002), the Big-Five

personality traits (Gosling et al., 2003) and demographic characteristics.

Procedure The sessions were run in May 2017 in the experimental laboratory at the

University of Bonn. The experiment was programmed and conducted with the software

z-Tree (Fishbacher, 2007).

At the end of the experiment, each participant received: (i) a show-up fee of e4, (ii)

the payment for one randomly chosen decision out of the 25 decisions made, (iii) the

payment for one randomly chosen belief out of the 23 beliefs elicited, but only in case

of a correct guess. On average, a participant earned e11.50.

3.1.2 Testable predictions

Decision 6 and its repetitions test Theorem 3 Part 3, i.e., they test the predictions of the

regret game when it is a game of coordination with two pure strategy Nash Equilibria.
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A regret averse type will choose the lottery if he believes that his partner chose the

lottery, and the sure amount otherwise. This yields our first testable prediction.

Prediction 1. In Decision 6 and its repetitions, believing that his partner will choose

the lottery (sure amount) increases a regret averse agent’s probability of choosing the

lottery (sure amount).

Decision 4 tests Theorem 3 Part 1, i.e., it tests the predictions of the regret game

when choosing the sure amount is the unique equilibrium in dominant strategies. De-

cision 5 tests Theorem 3 Part 2, i.e., it tests the predictions of the regret game when

choosing the lottery is the unique equilibrium in dominant strategies. When the regret

game has a unique equilibrium in dominant strategies, an agent will choose it regardless

of their regret preferences and regardless of their beliefs. This yields our second testable

prediction.

Prediction 2. Regret averse agents will choose the sure amount in Decision 4 and the

lottery in Decision 5, regardless of their beliefs.

We also have a third prediction, aimed at testing whether, under a partner-dependent

information condition (basically a threshold-based variant of the regret game), partic-

ipants behave according to the type they were classified as in Decisions 1 and 2. In

Decision 3, regret averse (and rejoice loving) participants should choose the same lot-

tery threshold as in Decision 1 if they believe that their partner played the lottery (i.e.,

if they expect to learn the lottery’s outcome) and the same lottery as in Decision 2 if

they believe that their partner did not play the lottery (i.e., if they expect not to learn

the lottery’s outcome). That is, they should choose a lottery threshold in between the

lottery thresholds chosen under information and under no information.

As x2 > x1 for regret averse types and x2 < x1 for rejoice loving types, for regret

averse (rejoice loving) participants x3 should exceed (fall short of) x1 and fall short

of (exceed) x2. For regret neutral participants x3 should equal x1 and x2: they should

choose the same lottery threshold as in Decisions 1 and 2, independently of their beliefs.

Prediction 3. For regret averse (rejoice loving) agents, x3 will exceed (fall short of)

x1 and fall short of (exceed) x2. For regret neutral agents, x1 = x2 = x3.
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3.1.3 Results

A total of 144 subjects participated in the experiment with over 90% of them students

and 56% of them female. The average age was 25 (24 among students and 27 among

non students). In our sample, 22% of the participants chose x2 > x1 and are classified

as regret averse. Half the participants chose x2 = x1 and are classified as regret neutral.

The remaining participants chose x2 < x1 and are classified as rejoice loving. Figure

1 shows the distribution of the difference between x2 and x1, which is a proxy for the

strength of participants’ regret aversion.
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Figure 1: Difference between x2 and x1.

To test Prediction 1, we estimate a logit panel-model with random effects, where

the unit of observation is the individual observed in Decisions 6 through 25. We report

the marginal effect of an agent’s belief that his partner chose the lottery on her own

likelihood of choosing the lottery.21 The dependent variable lottery choice takes value

1 if the agent chooses the lottery and 0 if he chooses the sure amount. We use the

following independent variables. The variable belief equals 1 if the agent believes that

his partner chose the lottery in the current round and 0 if he believes that his partner

chose the sure amount. The variables belief if regret averse and belief if non regret

averse equal belief if, respectively, the agent is regret averse and non regret averse (i.e.,

21We cluster the standard errors at the matching group-level.
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regret neutral or rejoice lover). The variable past regret captures regret generated by

previous decisions, and equals 1 (i) if an agent has not chosen the lottery in the previous

round, while his partner has, and the lottery has been successful, or (ii) if an agent has

chosen the lottery in the previous round and the lottery was not successful. It equals 0

otherwise.22 In column (1), we only control for beliefs if regret averse and beliefs if non

regret averse. In column (2), we additionally control for past regret. In column (3), we

additionally control for demographics (female dummy, student dummy and age).

We find that, consistently with Prediction 1, believing that their partner chose

the lottery significantly increases regret averse participants’ likelihood of choosing the

lottery. We observe a positive impact of beliefs on choice also for non regret averse

participants. However, for non regret averse participants the magnitude of the marginal

effects is smaller than for regret averse participants.

Table 1: Impact of beliefs on choice (all rounds)

DV: lottery choice (1) (2) (3)

belief if regret averse 0.175∗∗∗ 0.167∗∗∗ 0.166∗∗∗

(0.032) (0.033) (0.033)
belief if non regret averse 0.172∗∗∗ 0.159∗∗∗ 0.157∗∗∗

(0.022) (0.022) (0.022)
past regret No Yes Yes
female dummy No No Yes
student dummy No No Yes
age No No Yes
N 2880 2736 2736

Marginal effects from logit regression. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in

parentheses, clustered at matching group-level. DV equals 1 if the agent chose the lottery and 0

otherwise.

Interestingly, when we focus on the last iteration of Decision 6 (Table 2), where

we expect that learning may have helped participants to converge to equilibrium, we

observe that the impact of beliefs on choice is larger than in Table 1 and highly signifi-

cant for regret averse participants. In contrast, it is only marginally significant for non

regret averse participants. Moreover, the difference in the magnitude of the marginal

22Note that, while both (i) and (ii) can be interpreted as regret driven by past, unsuccessful decisions,
their nature can potentially differ. While (i) captures peer-induced regret, as well as personal loss, (ii)
only captures loss. Given that, we also repeat our regressions splitting past regret into two dummies
respectively corresponding to cases (i) and (ii). Our results do not change.
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effects between regret averse and non regret averse is larger in the last iteration than

in all rounds pooled. Our first and core result follows.

Table 2: Impact of beliefs on choice (last round)

DV: lottery choice (1) (2) (3)

belief if regret averse 0.301∗∗∗ 0.291∗∗∗ 0.284∗∗∗

(0.091) (0.092) (0.093)
belief if non regret averse 0.195∗∗ 0.179∗∗ 0.162∗

(0.085) (0.085) (0.087)
past regret No Yes Yes
female dummy No No Yes
student dummy No No Yes
age No No Yes
N 144 144 144

Marginal effects from logit regression. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in

parentheses, clustered at matching group-level. DV equals 1 if the agent chose the lottery and 0

otherwise.

Result 1. In Decision 6 and its repetitions, believing that their partner chose the lottery

(sure amount) significantly increases regret averse participants’ probability to choose the

lottery (sure amount). This effect becomes stronger in the last iteration of the game.

This result indicates that regret aversion drives coordination. However, in our

setting there may have been two additional drivers of coordination: preferences for

conformism (Charness et al., 2017, 2019) and inequity averse preferences (Fehr and

Schmidt, 1999). As further discussed in Section 3.2, we ran a second experiment to

eliminate these potential confounds.

Table 3 reports the percentages of participants choosing the lottery in Decisions 4

and 5, i.e., when the regret game has a dominant strategy. Consistently with Prediction

2, the large majority of regret averse participants chose the dominant strategy, i.e., the

sure amount in Decision 4 and the lottery in Decision 5. As expected, also the large

majority of non regret averse participants followed this pattern of decisions.23

23In Table 3 the non regret averse participants include regret neutral participants, and rejoice lovers
when the game had a dominant strategy (x1−x2 ≤ 2). As expected, when the game had no dominant
strategy (x1 − x2 > 2), the percentages of rejoice lovers choosing the sure amount in Decision 4 and
the lottery in Decision 5 were remarkably lower.
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Table 3: Participants choosing the lottery in Decisions 4 and 5

regret averse non regret averse
Agents who chose lottery in D4 6% 20%
Agents who chose lottery in D5 66% 80%

Table 4: Mean lottery thresholds chosen in Decisions 1-3 by type

regret averse regret neutral rejoice lover all
Decision 1 (x1) 9.15 11.53 12.33 11.22

(2.40) (2.04) (1.98) (2.39)
Decision 2 (x2) 12 11.10 9.77 11.16

(2.56) (2.70) (2.34) (2.40)
Decision 3 (x3) 11.25 11.64 11.10 11.41

(2.59) (2.30) (2.70) (2.47)
x1 − x3 -2.1∗∗∗ -0.11 1.23∗∗ -0.19
x2 − x3 0.75∗ -0.54 -1.33∗ -0.25
N 32 73 39 144

Standard deviation in parentheses. The Wilcoxon test tests H0 : x1−x3 = 0 and H0 : x2−x3 = 0.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Result 2. Most regret averse agents choose the sure amount in Decision 4 and the

lottery in Decision 5.

Finally, as a robustness check, we verify whether under a partner-dependent infor-

mation condition (Decision 3), participants behave consistently with the type they were

classified as through Decisions 1 and 2. Table 4 presents the amounts chosen in Deci-

sion 1, Decision 2 and Decision 3 – overall and broken down by type. We find that, in

line with Prediction 3, for regret averse participants the mean lottery threshold chosen

in Decision 3, x3, is higher than mean x1 and lower than mean x2. For rejoice loving

participants, the opposite happens, and for regret neutral participants mean x3 does

not significantly differ from mean x1 and mean x2.

To check whether these differences are statistically significant, we run the Wilcoxon

equality test on matched data. The null hypotheses H0 : x1 − x3 = 0 and H0 :

x2−x3 = 0 are rejected for regret averse participants and rejoice loving participants, and

not rejected for regret neutral participants. These results strongly support Prediction

3, thereby offering some reassurance that participants have been classified into types

accurately.

Result 3. The partner-dependent lottery threshold x3 is significantly higher (lower)
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than the lottery threshold x1 and significantly lower (higher) than the lottery threshold

x2 for regret averse (rejoice loving) participants. It is not significantly higher than x1

and x2 for regret neutral participants.

Prediction 3 implies that in Decision 3, the correlation between lottery threshold

chosen and belief about the partner’s lottery threshold, denoted by χ, will be higher for

regret averse participants than for non regret averse participants, i.e., χR > χNR. This

is due to the fact that regret aversion induces a desire to coordinate. We find that χR

equals 0.77 and χNR equals 0.47. The test for equality of correlation coefficients rejects

the null hypothesis H0 : χR = χNR. In particular, χR is significantly higher than χNR

(p = 0.01).

3.2 Experiment 2

3.2.1 Design

Overview If participants have preferences for conformism (Charness et al., 2017,

2019), they may have chosen what they believed their partner to choose because in

the game in Experiment 1 they did not know ex ante what the best choice was and

thus preferred to do what their partner did in a previous round or what they believed

their partner did in the current round. Moreover, if participants have inequity averse

preferences (Fehr and Schmidt, 1999), they may have coordinated on the decision of

their partner because in the game in Experiment 1 their earnings may have substantially

differed from their partner’s earnings and they did not want to risk to earn less than

their partner. To eliminate these potential confounds we designed and ran a second

experiment.

The main goal of Experiment 2 is to test our model’s key prediction (i.e., that regret

averse players try to coordinate with their partner) using a one shot variant of the regret

game that eliminates the aforementioned potential confounds. The secondary goal of

Experiment 2 is to provide an alternative and simple method to classify participants

into regret averse and non regret averse types, which serves as a robustness check for

the classification into types provided by Experiment 1.

Experiment 2 consists of two parts. In the first part, participants have to choose

between a sure amount of money and a lottery. This decision is calibrated such that

they prefer the sure amount. Then they are asked whether they want to find out how
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much they would have earned had they chosen the risky lottery. If they choose not

to find out, they forgo a small amount of money. This question allows us to classify

participants into regret averse types and non regret averse types. In the second part

of the experiment, participants are matched in pairs and play a variant of the regret

game: they must choose whether they want to find out the risky lottery’s outcome or

not, but they can avoid finding out only if their partner decides not to find out too.

Part 1 In this part subjects have to take 3 decisions.

Decision 1. We elicit each participant’s valuation of a lottery. We ask each partici-

pant for the smallest sure amount of money that they would choose over a risky lottery

paying £80 with 20% probability and £0 with 20% probability.24 We use an incentive

compatible mechanism, the BDM, in the simpler version developed by Healy (2017).

Participants are shown a list of 80 questions, each asking if they prefer the risky lottery

(referred to as Option A) or a sure amount of money (referred to as Option B). The

sure amount of money ranges from £1 (first question) to £80 (last question). Partici-

pants are then asked at which value of Option B they want to switch from Option A

to Option B. Only 10% of the participants are paid for this decision.25

Decision 2. We ask participants to choose between a sure amount of money (equal

to the amount elicited in Decision 1 plus £2) and the risky lottery paying £80 with

20% probability and £0 with 80% probability. In order to be consistent with Decision

1, participants should choose the sure amount of money. All participants are paid for

their decision in Decision 2.

Decision 3. All the participants who choose the sure amount in Decision 2 are asked

whether they want to find out how much they would have earned, had they chosen the

risky lottery.26 By choosing not to find out, they forgo a small amount of money. In

particular, if they chose to find out, they are informed about the lottery’s outcome at

24To make the lottery easier to understand, we told them that the computer would randomly draw a
ball from an urn containing 4 blue balls and 1 red ball. If the ball drawn was blue, they would earn £0;
if the ball drawn was red, they would earn £80. We also showed a picture of the urn. See Appendix
C.2 for further details.

25To ensure that only participants who read the instructions carefully remain in the study, partic-
ipants who chose a number higher than twice the expected value of the lottery (24% of the initial
sample) ended the experiment after this decision.

26The participants who chose the lottery in Decision 2 (9%), thereby contradicting their previous
decision, were then asked alternative questions and excluded from our data analysis. For further
details, see Appendix C.2.
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the end of the experiment, and their earnings are increased by £0.04. If they chose

not to find out, they are not informed about the lottery’s outcome at the end of the

experiment, and their current earnings are not increased by £0.04. Those who choose

not to find out are classified as regret averse and those who chose to find out as non

regret averse.

Part 2 In this part subjects play one shot of a variant of the regret game.

Decision 4. Participants are matched in pairs. Again, they must choose whether

they want to find out the risky lottery’s outcome or not. However, whether they learn

the lottery’s outcome also depends on their partner’s behaviour. If they choose not to

find out, they can avoid learning the lottery’s outcome only if their partner also chose

not to find out. Either this decision or the previous decision is randomly selected and

implemented. If a participant chooses to find out in the randomly selected decision,

their total earnings are increased by £0.04.

It is now easy to see how the design of Experiment 2 removes the potential confounds

generated by preferences for conformism and inequity averse preferences. First, we use

a one shot game in Decision 4, thus participants cannot imitate their partner’s decisions

in previous rounds. Second, in the variant of the game in Decision 4 participants can

immediately identify the best decision to take given their preferences. This eliminates

the concern generated by conformism motives, which would be at play if participants

were unsure of the best thing to choose. Finally, in Decision 4 the potential earning

difference generated by a participant’s decision is negligible (at most £0.04). This

eliminates the concern generated by inequity averse motives.

After making their decision, participants are also asked to guess their partner’s

decision. If they guess their partner’s decision, they earn additional £0.50. Only one

of the last two questions is randomly selected and implemented.

Differently from Experiment 1, in Experiment 2 the strategic decision aimed at

testing the predictions of the regret game was not repeated. The reasons are the

following. First, we wanted to avoid repeated-game effects and particularly the effect

of conforming with the partner’s previous decisions. Second, given that the strategic

decision was simple and built on the previous decision, it did not appear necessary to

provide participants with learning opportunities. Third, we thought that the effect of

regret on behaviour may be more salient when the game is played only once.
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Procedure Due to COVID 19-related lab closures, the sessions were run online in

May 2021. To increase the robustness and external validity of our results, we used

two different samples: students from Royal Holloway University of London and Prolific

participants. The experiment was programmed and conducted with the software o-Tree

(Chen et al., 2016).

At the end of the experiment, 10% of participants were paid for Part 1 and every

participant was paid for Decision 2. If in the randomly selected decision out of Decision

3 and Decision 4, a participant chose to find out the lottery’s outcome, their total

earnings were increased by £0.04. If they guessed their partner’s decision, they earned

additional £0.50. On average, a participant earned £18.21.

3.2.2 Testable predictions

Decision 4 tests the prediction of the regret game when it is a game of coordination. In

Decison 4, a regret averse participant will choose to find out the lottery’s outcome if he

believes that his partner chose to find out the lottery’s outcome too. He will choose not

to find out the lottery’s outcome if he believes that his partner also chose not to find

out the lottery’s outcome. This implies that the share of regret averse agents choosing

to find out under the belief that their partner chose to find out will be significantly

higher than the share of regret averse agents choosing to find out under the belief that

their partner chose not to find out. Similarly, the share of regret averse agents choosing

not to find out under the belief that their partner also chose not to find out will be

significantly higher than the share of regret averse agents choosing not to find out under

the belief that their partner chose to find out. This yields our testable prediction.

Prediction 4. The fraction of regret averse agents choosing the option that they believe

their partner chose will be significantly higher than the fraction choosing the alternative

option.

3.2.3 Results

We have a sample of 213 participants who completed the experiment: 84 students from

Royal Holloway University and 129 participants from Prolific. 54% of the participants

were female, 44% were male and the remaining 2% classified themselves as “other”.
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Table 5: regret averse subjects’ choices and beliefs in Decision 4

Believes partner Believes partner Total
finds out does not find out

Finds out 5 0 5
Does not find out 8 12 20

Total 13 12 25

The gender distribution is very similar across our two subsamples. The average age

was 27 (21 among Royal Holloway students and 32 among Prolific participants).

In our sample, 12% of the participants chose not to find out the lottery’s outcome

and are classified as regret averse and 88% of the participants chose to find out the

lottery’s outcome and are classified as non regret averse.

Table 5 shows the distribution of choices – between finding out and not finding out

– and beliefs for regret averse participants. We can observe that 80% of the regret

averse participants chose not to find out, as in the individual decision, and 20% chose

to find out. It makes sense that either option gets chosen, as in Decision 4 there is no

dominant strategy. All the participants who expect their partner to choose not to find

out, also chose not to find out. Some participants chose not to find out even if they

believed that their partner found out. This may have the following explanation. Given

that we elicited point beliefs, participants who reported that their partner chose to find

out could still believe that with some probability their partner chose not to find out.

In this case it would be optimal not to find out, because the small amount of money to

forgo is compensated by the reduction of the expected regret.

Table 6 shows the distribution of choices – between finding out and not finding out

– and beliefs for non regret averse participants. Over 98% of the non regret averse

participants (185 out of 188) chose to find out, as in the individual decision. This

is expected, as finding out is a dominant strategy for them. It also shows that they

are consistent across decisions. Out of these 185 participants choosing to find out,

10 believed that their partner chose not to find out. This is interesting, as it further

confirms that finding out is a dominant strategy for them.

To check whether the differences observed in Table 5 are statistically significant, we

run a t-test. Our null hypothesis is that the frequency with which that a regret averse

participant chooses to find out under the belief that his partner did the same equals

the frequency with which he chooses to find out under the belief that his partner chose
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Table 6: Non regret averse subjects’ choices and beliefs in Decision 4

Believes partner Believes partner Total
finds out does not find out

Finds out 175 10 185
Does not find out 0 3 3

Total 175 13 188

not to find out. The relative frequencies are 1 and 0.61, respectively. We reject the null

hypothesis (p=0.0151). Our results support Prediction 4.

Result 4. The frequency with which regret averse participants choose the option that

they believe their partner chose is significantly higher than the frequency with which they

choose the alternative option.

4 Conclusion

This paper began with the following simple observation: in many situations, ranging

from technology adoption to ordering food in a restaurant, learning the outcome of

unchosen alternatives is not guaranteed. Given that a decision maker can only regret

a foregone alternative if she learns its outcome, what should be done? We showed how

to incorporate this observation into the classic model of a decision maker who is regret

averse. Our first contribution is a formalisation of ex post information structures that

allow for the possibility that unchosen alternatives are / are not learned about. That

is, the domain of preferences needs to be extended from simply ‘objects of choice’ to

‘objects of choice and their associated information environment’. For a given choice

set, we provide a definition that ranks two informational environments according to

which is “more informative”. And we show, in Theorem 2, that a more informative

environment is never preferred for a regret-averse decision maker.

In Section 2.3, we allow for the possibility that the ex-post information environment

that will be faced depends not only on one’s own choice but also on the choices of others.

Thus, what on the surface appears to be a collection of individual decision problems -

like for example ordering food in a restaurant - is in fact a rich multi-player behavioural

game. The reason, of course, is that the decisions of others - one’s fellow diners - can be

informative about foregone alternatives, and for a regret averse individual that matters.
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We term this environment the regret game, and in Theorem 3 we classify conditions on

preferences for which it is a coordination game with multiple equilibria.

We tested the predictions of our model through two experiments. Both experiments

have two main goals: identifying the participants who are regret averse and testing

whether they behave as our theory predicts. In the first experiment, we find that, as

predicted by our model, regret averse participants try to coordinate with their partner.

Believing that their partner chose an option significantly increases their likelihood of

choosing that option. We observe a positive impact of beliefs on choice also for non

regret averse participants. However, for non regret averse participants this impact is

smaller. Moreover, when we focus on the last iteration of the game, the impact of

beliefs on choice is larger and highly significant for regret averse participants, but is

only marginally significant for non regret averse participants.

These results indicate that regret aversion drives coordination. However, preferences

for conformism (Charness et al., 2017, 2019) and inequity averse preferences (Fehr and

Schmidt, 1999) may have been two additional drivers of coordination. We ran a second

experiment to eliminate these potential confounds.

The results of the second experiment support the key findings of the first experi-

ment: regret averse participants try to coordinate with their partner. The probability

that they choose what they think their partner chose is significantly higher than the

probability that they choose the alternative option. Most notably, all the regret averse

participants who believe that their partner chose to avoid information, choose to avoid

information too. Instead, almost all of the non regret averse participants (over 98%)

play the dominant strategy, and some of them do so under the belief that their partner

chose the alternative option. Thus, once the aforementioned confounds are removed by

design, we still find strong support for our model’s predictions.

It is traditional in economic modelling to view the information available to individ-

uals as part of the environment and not something over which there is choice. While

we have focused on regret, one can imagine a host of other behavioural explanations

for why an individual might (i) want to avoid information, and then (ii) take steps in

order to avoid information. It then immediately follows, that since the behaviour of

others can impact one’s available information, there are strategic interdependencies at

play. It is our hope that more models of the sort presented here can be developed to

better-understand the role that evolving information plays for economic agents, and in
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particular the way in which it connects them.
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Appendix

A Proofs

Proof of Theorem 1

Proof.

E
[(
uT (`i(ω)

)]
≥ E

[(
uT (`j(ω)

)]
⇐⇒ E

[(
u(`i(ω)

)]
− E[R(`i;ω)] ≥ E

[(
u(`j(ω)

)]
− E[R(`j;ω)]

⇐⇒ E
[(
u(`i(ω)

)]
− κE

[
max
`∈L

(
u(`(ω)

)
−
(
u(`i(ω)

)]
≥ E

[(
u(`j(ω)

)]
− κE

[
max
`∈L

(
u(`(ω)

)
−
(
u(`j(ω)

)]
⇐⇒ (1 + κ)E

[(
u(`i(ω)

)]
− E

[
max
`∈L

(
u(`(ω)

)]
≥ (1 + κ)E

[(
u(`j(ω)

)]
− E

[
max
`∈L

(
u(`(ω)

)]
⇐⇒ (1 + κ)E

[(
u(`i(ω)

)]
≥ (1 + κ)E

[(
u(`j(ω)

)]
⇐⇒ E

[(
u(`i(ω)

)]
≥ E

[(
u(`j(ω)

)]

Proof of Theorem 2

Proof. Clearly we can ignore lotteries `i for which π′i = π′′i . So consider a lottery k such

that π′k is strictly finer than π′′k (note that Definition 1 requires that there is some such

lottery). By the definition of more informative there is a non-empty event F that is an

element of π′′k but not π′k, and moreover, F is the union of disjoint elements of π′k. Let

O′k be the set of lotteries that are learned about in environment Π′ and let O′′k be the

set of lotteries that are learned about in environment Π′′. Clearly, O′′k ⊂ O′k, and so it

must be that for every state ω we have

max
`h∈O′

k

`h(ω) ≥ max
`h∈O′′

k

`h(ω),

with the inequality being strict for at least one state.

Since choiceless utility does not depend on the informational environment, we need

only consider the regret. Now note that the inequality above can then be adapted to
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show that for all states ω ∈ Ω,

κ
(

max
`h∈O′

k

u(`h(ω))− u(`(ω))
)
≥ κ

(
max
`h∈O′′

k

u(`h(ω))− u(`(ω))
)

with the inequality being strict for at least one state.

Thus, for every lottery the total utility in a given state is no higher under information

environment Π′ than under Π′′ and for some lottery there is a state at which the total

utility is strictly lower. The result then follows.

Proof of Theorem 3

Proof. Parts 1 and 2 are immediate as players have a dominant strategy over each range

of parameters.

Consider part 3. It is easy to see that both symmetric profiles are Nash Equilibria

over this range. To see that the symmetric outcomes are the only pure strategy Nash

Equilibria, suppose to the contrary. That is, suppose there is a pure strategy Nash

equilibrium, â, in which some individual, say i, chooses `S and another individual,

say j, chooses the risky lottery, `r. Since q is defined as a strictly increasing func-

tion from {0, 1, 2, . . . , N − 1} to [0, 1], we have that qi(â) = q(# {k 6= i : âj = `r}) >
q(# {k 6= j : âk = `r}) = qj(â). But this contradicts the fact that `S is optimal for in-

dividual i and `r is optimal for individual j, and so profile â cannot be a pure strategy

Nash equilibrium.

B Extensions

B.1 Heterogeneous regret preferences

There are many ways to extend our framework to incorporate heterogeneity in levels of

regret aversion. Below we consider two such avenues. The first is a special case of the

second.

A simple example with heterogeneity in levels of regret aversion. Suppose

the population is comprised of two distinct groups, with all individuals in a given group

sharing a common coefficient of regret aversion. For the sake of simplicity we assume

that those in the first group have coefficient of regret aversion κ > 0 while those in the
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second group have coefficient of regret aversion equal to zero. We refer to those in the

first group as regret averse and those in the second group as regret neutral.

We assume that the parameters of the problem are given by condition 3 of the

Theorem, i.e., that u(`r) ∈
[

1
p
, 1
p

(1 + κ(1− p))
]
. For these parameters, the optimal

choice for the regret averse individuals depends on population behaviour.27

With the population size given by N , suppose that the number of regret averse

individuals is m (and hence the number of regret neutral individuals is N−m). Without

loss of generality we can relabel everyone such that the regret averse individuals are

listed first (i.e., 1 through m). This set up is a variant of the regret game, in which

the strategy chosen by the N −m regret neutral individuals will be `r since this is the

dominant strategy for these individuals.

Given that the regret neutral individuals have a dominant strategy, there are two

candidates for pure strategy equilibria, a∗ and a∗∗, where,

a∗ =
(

`S, . . . , `S︸ ︷︷ ︸
behaviour of m regret averse

, `r, . . . , `r︸ ︷︷ ︸
behaviour of N−m regret neutral

)
a∗∗ =

(
`r, . . . , `r︸ ︷︷ ︸

behaviour of m regret averse

, `r, . . . , `r︸ ︷︷ ︸
behaviour of N−m regret neutral

)
Clearly a∗∗ is always a pure strategy equilibrium. The issue of interest is under

what conditions on group size m will a∗ be a pure strategy equilibrium. The issue for

regret averse individuals now is that since q(N − m) > 0, there is always a positive

probability that the outcome of the risky lottery will be learned ex post. Thus the risk

free lottery no longer provides full insurance from regret for the regret averse individuals,

and the relative payoff advantage to them from coordinating on the risk free lottery is

diminished. In fact, if m is ‘too low’, then it is possible that there are simply ‘too many’

individuals who have `r as a dominant strategy for the m regret averse individuals to

coordinate on the risk free lottery. The precise value of m for which this happens will

depend upon the functional form of qi but it can easily be calculated.

A rich example with heterogeneity in levels of regret aversion. In the above

example, we fixed things such that there were only two levels of regret aversion, κ and 0.

27If we did not make this assumption, then the regret averse individuals also have a dominant
strategy (meaning that everybody has a dominant strategy so the situation is ‘obvious’).
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Here we show how to model a Bayesian game, of which the above complete information

example was only one of an infinite number of realisations of the strategic environment.

By this we mean the following. Suppose that everyone’s regret coefficient is unknown

ex-ante, but rather each individual i will have regret coefficient κi that is the realisation

of a random variable drawn from some distribution with support [0,∞). Thus, the

realised game will be one in which the individuals can be ordered 1 through N according

to their realised coefficient of regret aversion (let the ordering be such that κi < κj

whenever 1 ≤ i < j ≤ N).

It is clear that any individual with realised coefficient of regret aversion κ < u(`r)−1
1−p

will always choose the risky lottery since it is dominant to do so. With a slight abuse

of terminology we refer to these individuals as regret neutral as, while they may have

a coefficient of regret aversion that differs from 0, their coefficient of regret aversion

is sufficiently low that it is a dominant strategy for them to choose the risky lottery.

For all the remaining individuals, there is a coordination game being played that has

the flavour of the complete information example above. That is, they are playing a

coordination game amongst themselves, but there is an outside group of individuals

who make choosing the risky lottery relatively more attractive. Of course, this happens

for every possible realisation of the random vector of coefficients of regret aversion,

(κ1, . . . , κN). Given knowledge of the distribution that determines this random vector,

the Bayesian Nash equilibria to this game can be computed.

B.2 Rejoice

This subsection describes how our model can be extended to incorporate rejoicing into

it. In the two state world, the utility of a regret individual is given by

UR(`S, ω, q) =

{
u(`S)− qκ

(
u(`r)− u(`S)

)
, if ω = ω1

u(`S), if ω = ω2

(A1)

and

UR(`r, ω, q) =

{
u(`r), if ω = ω1

u(`r)− κ
(
u(`S)− u(`r)

)
, if ω = ω2

(A2)

Now suppose that in addition to experiencing regret, individuals also experience

rejoice when their choice turned out ex-post optimal. This is captured by amending

equations (A1) and (A2) above to include a utility benefit, evaluated as a function
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of the difference between ‘choiceless utility from chosen lottery’ and ‘choiceless utility

from lottery not chosen’, that enters positively when the choice made turns out optimal

ex-post. Formally, the equations above are replaced by

UR(`S, ω, q) =

{
u(`S)− qκ1

(
u(`r)− u(`S)

)
, if ω = ω1

u(`S)+qκ2

(
u(`S)− u(`r)

)
, if ω = ω2

(A3)

and

UR(`r, ω, q) =

{
u(`r)+κ2

(
u(`r)− u(`S)

)
, if ω = ω1

u(`r)− κ1

(
u(`S)− u(`r)

)
, if ω = ω2

(A4)

where κ1 is the coefficient of regret aversion (replacing the κ from equations (A1) and

(A2) and κ2 weights the rejoice experienced. We note that there is again a q on the

rejoice term associated with choosing the safe lottery, `S. As with the discussion in the

main text, this is because the outcome of the risky lottery is not learned with certainty

when the safe lottery is chosen. In this case however, the lack of certainty associated

with risky lottery harms an individual prone to rejoice, as the fact that choosing the

safe lottery turned out optimal may never be learned.

C Experimental instructions

C.1 Experiment 1

Welcome to the study.

Please note that you may not talk to the other participants at any time during the entire study. Should

this happen, we will be forced to terminate the study.

Please read these instructions carefully.

In this study, you will make 25 decisions.

At the end of the study, you will be paid in cash for ONE of these 25 decisions, picked at random by

the computer.

Each decision is equally likely to be picked. So you should regard each decision as if it was the relevant

one.

In addition, we will ask you 23 additional questions.

At the end of the study, ONE of the additional questions will be randomly picked and paid on the

base of your answer.

Each question is equally likely to be picked. So you should answer each question, as if it were the

relevant one.
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In addition, you will receive e4 for your participation in the study.

Instructions about the first part of the study

Please read these instructions carefully.

In the first part of the study, we will give you two options.

Left Right

ex with 50% probability and e0 with 50% probability e5 with certainty

First, you must specify the smallest number x, such that you would prefer option “Left” to

option “Right”. You can choose any number in the list (5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15).

After you have submitted your decision, the computer will randomly pick a number from the

list (5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15).

All numbers have the same probability of being picked.

If the number picked by the computer is smaller than the number x you chose, then Right will be

the selected option. This means that you will get e5.

If the number picked by the computer is equal to or bigger than the number x you chose, then Left

will be the selected option. This means that you will get the number of e picked by the computer

with 50% probability and 0 with 50% probability.

If you have any questions, please raise your hand and we will come to you.

[Control questions]

Decision 1 (on screen only)

You have two options.

Left Right

ex with 50% probability and e0 with 50% probability e5 with certainty

First, you must specify the smallest number x, such that you would prefer option “Left” to option

“Right”. You can choose any number in the list (5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15).

After you have submitted your decision, the computer will randomly pick a number from the list (5;

6; 7; 8; 9; 10; 11; 12; 13; 14; 15).

All numbers have the same probability of being picked.

If the number picked by the computer is smaller than the number x you chose, then Right will be

the selected option. This means that you will get e5.

If the number picked by the computer is equal to or bigger than the number x you chose, then Left

will be the selected option. This means that you will get the number of e picked by the computer

with 50% probability and 0 with 50% probability.
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Important information

After you have submitted your decision, the computer will let you know the outcome of option

“Left” even if you have chosen a number x such that option “Right” is selected.

This means that, if “Right” is the selected option, you will learn nevertheless how much you would

have earned, had “Left” been the selected option.

Decision 1. I prefer option Left to option Right if x is at least equal to .

Decision 2 (on screen only)

You face the same decision as before.

Left Right

ex with 50% probability and e0 with 50% probability e5 with certainty

First, you must specify the smallest number x, such that you would prefer option “Left” to option

“Right”. You can choose any number in the list (5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15).

After you have submitted your decision, the computer will randomly pick a number from the list (5;

6; 7; 8; 9; 10; 11; 12; 13; 14; 15).

All numbers have the same probability of being picked.

If the number picked by the computer is smaller than the number x you chose, then Right will be the

selected option. This means that you will get e5.

If the number picked by the computer is equal to or bigger than the number x you chose, then Left

will be the selected option. This means that you will get the number of e picked by the computer

with 50% probability and 0 with 50% probability.

The only difference is the following. After you have submitted your decision, the computer will NOT

let you know the outcome of option “Left” if you have chosen a number x such that option “Right”

is selected.

This means that, if “Right” is the selected option, you will NOT learn how much you would have

earned, had “Left” been the selected option.

Decision 2. I prefer option Left to option Right if x is at least equal to .

Instructions about decisions 3, 4, 5 and 6

Please read these instructions carefully.

Before each of the next four decisions, you will be randomly assigned to another participant.

In this lab, there are 3 potential participants who can be randomly assigned to you.

At no time will you find out the identity of the other participant.

If you have any questions, please raise your hand and we will come to you.
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Decision 3 (on screen only)

You are randomly paired with another participant.

Each of you faces the same decision as before.

First, you must specify the smallest number x, such that you would prefer option “Left” to option

“Right”. You can choose any number in the list (5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 15).

After you have submitted your decision, the computer will randomly pick a number from the list (5;

6; 7; 8; 9; 10; 11; 12; 13; 14; 15).

All numbers have the same probability of being picked.

If the number picked by the computer is smaller than the number x you chose, then Right will be

the selected option. This means that you will get e5.

If the number picked by the computer is equal to or bigger than the number x you chose, then Left

will be the selected option. This means that you will get the number of e picked by the computer

with 50% probability and 0 with 50% probability.

The only difference is the following. If you have chosen a number x such that option “Left” is selected,

you always know the outcome of option “Left”.

If you have chosen a number x such that option “Right” is selected, the computer will inform you

about the outcome of option “Left” only if “Left” is the selected option for your partner.

This means that, if “Left” is the selected option for your partner, you will learn nevertheless (as in

Decision 1) how much you would have earned, had “Left” been the selected option. If “Right” is the

selected option for your partner, you will NOT learn (as in Decision 2) how much you would have

earned, had “Left” been the selected option.

Decision 3. I prefer option Left to option Right if x is at least equal to .

Question about partner’s choice

Now we ask you about your partner’s choice.

Which number do you think that your partner chose? .

If you guess the exact number chosen by your partner, or a number 1 point lower or 1 point higher

than the number chosen by your partner, you will be paid e1 more at the end of the study.

Instructions about the second part of the study

Please read these instructions carefully.

In the second part of the study, we will give you two options.

Left Right

e“a number” with 50% probability and e0 with 50% probability e5 with certainty

48



Unlike in the previous part of the study, we will now give you a number.

So instead of choosing a number, you will choose either Left or Right.

If you have chosen option “Left”, you will always know the outcome of option “Left”.

If you have chosen option “Right”, the computer will inform you about the outcome of option

“Right” only if your partner has chosen “Right”.

This means that if you have selected option “Right” and your partner option “Left”, you still learn

(as in decision 1) how much you would have earned if you had chosen option “Left”. If you and your

partner have chosen “Right”, you will NOT learn (as in decision 2) how much you would have earned

if you had chosen “Left”.

If you have any questions, please raise your hand and we will come to you.

Decision 4 (on screen only)

You are now paired with another participant.

This participant could be either the same as before or a different one.

Left Right

ex chosen in D1-2 with 50% probability and e0 with 50% probability e5 with certainty

If you have chosen option “Left”, you will always know the outcome of option “Left”.

If you have chosen option “Right”, the computer will inform you about the outcome of option

“Left” only if your partner has chosen option “Left”.

This means that if you have chosen option “Right” and your partner option “Left”, you will learn

nevertheless (as in Decision 1) how much you would have earned, had you chosen option “Left”. If

both you and your partner have chosen option “Right”, you will NOT learn (as in Decision 2) how

much you would have earned, had you chosen option “Left”.

Decision 4. Do you prefer option Left or option Right? [Right/Left]

Question about partner’s choice

Do you think that your partner chose option Left or option Right? [Right/Left]

If you guess this right, you will be paid e1 more at the end of the study.

Decision 5 and decision 6 are exactly the same as decision 4, but the outcome of the lottery in case of

success is, respectively, the x chosen in decision 2 plus 2, and the sum of the x chosen in decision 1

and the x chosen in decision 2, divided by 2.
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Instructions about the third part of the study

Please read these instructions carefully.

In the third part of the study, you will repeat decision 6 for other nineteen times.

In these additional nineteen decisions, you will still be paired with the same partner.

If you have chosen option “Left”, you will always know the outcome of option “Left”.

If you have chosen option “Right”, the computer will inform you about the outcome of option

“Right” only if your partner has chosen “Right”.

This means that if you have selected option “Right” and your partner option “Left”, you still learn

(as in decision 1) how much you would have earned if you had chosen option “Left”. If you and your

partner have chosen “Right”, you will NOT learn (as in decision 2) how much you would have earned

if you had chosen “Left”.

If you have any questions, please raise your hand and we will come to you.

C.2 Experiment 2

[Consent form]

Thank you for being a participant in this study. The study will take approximately 15 minutes.

Please give this study your full attention. You will have a limited amount of time to complete the

study. Every screen has a timer. If time runs out, you will be excluded from the study and receive no

payment.

As mentioned in the invitation email and in the reminder email, participants in this study will be paid

via PayPal. Hence having a PayPal account and providing us with your PayPal email address is a

prerequisite for participating in this study.

Please, enter your PayPal email address here: .

In the sessions run on Prolific, it was not necessary to ask for participants’ PayPal email address for

payment, so the PayPal-related sentences were removed from the instructions.

Part 1

In this part of the study, you will be asked a list of questions.

10% of the participants in this study will be paid for this part of the study.
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Part 1

I am going to ask you the following list of questions.

In each question, there are two options. Option A is always drawing lots. Option B is always an

amount of money.

Drawing lots means the following. There are 5 balls in a jar, 4 are blue and 1 is red. The computer

will randomly choose one ball from the jar. If the ball drawn is blue, you will earn £0. If the ball

drawn is red, you will earn £80.

This means that Option A gives a 20% chance of earning £80 and an 80% chance of earning £0.

Note that the expected value of Option A is £16. This means that on average Option A pays £16.

[table]

In each question you choose either Option A (drawing lots) or Option B (an amount of money). After

you answer all 80 questions, I will randomly pick one question and pay you for your decision in that

question. Each question is equally likely to be chosen for payment.

Obviously you have no incentive to lie on any question, because if that question gets chosen for payment

then you would end up with the option you like less.

I assume you are going to choose Option A in at least the first few questions, but at some point switch

to choosing Option B. So, to save time, just tell me at which value of Option B you would switch. I

can then “fill out” your answers to all 80 questions based on your switch decision (choosing Option A

for all questions before your switch decision, and Option B for all questions at and after your switch

decision).

I will still draw one question randomly for payment. Again, if you lie about your true switch decision

you may end up getting paid an option you like less.
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At which value of Option B do you want to switch from Option A to Option B? Remember that Option

A pays £0 with 80% probability and £80 with 20% probability. [dropdown menu with all integers from

1 to 80 ]

We will give you [countdown timer ] minutes before you can submit your answer, so you can think

about it carefully. After [countdown timer ] minutes, the submit button below will become active.

Part 2

In this part of the study, you will be asked three questions: Questions 1, 2 and 3.

Every participant will be paid for their decision in Question 1.

Either Question 2 or Question 3 will be randomly selected and implemented.

Question 1

In Part 1 you switched at £[amount chosen in previous question].

In this question there are two options: an amount of money and drawing lots. Remember that drawing

lots means that the computer will draw a ball from a jar containing 4 blue balls and 1 red ball. If the

ball drawn is blue, you will earn £0. If the ball drawn is red, you will earn £80.

Which of these two options do you prefer?

• amount chosen in previous question + 2

• Drawing lots

Remember that every participant will be paid for their decision in this question.

Question 2

In Question 1 you chose £[amount chosen in previous question+2] over drawing lots.

Just so you know, the computer drew lots anyways. So it is possible to find out whether you would

have earned £80 or £0 if you had chosen drawing lots in Question 1.

Which of these two options do you prefer?

• Not find out

• Find out

If you choose Not find out, you will avoid knowing whether you would have earned £80 or £0. Then

your current earnings would be £[amount chosen in previous question+2].
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If you choose Find out, you will not avoid knowing whether you would have earned £80 or £0, but

£0.04 will be added to your earnings from Question 1. Then your current earnings would be £[amount

chosen in previous question+2+0.04].

Remember that either Question 2 or Question 3 will be randomly selected and implemented.

Question 3

You are now paired with another participant in this study. This participant is now your partner. Your

partner was asked the same questions as you up to now.

In Question 1 you chose £[amount chosen in previous question+2] over drawing lots.

However, recall than, as mentioned in Question 2, the computer drew lots anyways. So it is possible to

find out whether each of you would have earned £80 or £0 if you had chosen drawing lots in Question

1.

If you choose Not find out, you will avoid knowing whether you would have earned £80 or £0 only

if your partner also chose Not find out. Then your current earnings would be £[amount chosen in

previous question+2].

If you choose Find out, you and your partner will not avoid knowing whether each of you would

have earned £80 or £0, but £0.04 will be added to your earnings from Question 1. Then your current

earnings would be £[amount chosen in previous question+2+0.04].

After making your choice, you will be asked to guess your partner’s choice. You will earn additional

£0.50 if you correctly guess your partner’s choice.

Which of these two options do you prefer?

• Not find out

• Find out

Which option do you think your partner chose?

• My partner chose: Not find out

• My partner chose: Find out

Remember that either Question 2 or Question 3 will be randomly selected and implemented.

After this, there was one screen with basic demographic questions (age and gender) and one screen

with results and earnings.

Participants who chose more than twice the expected value of the lottery in Part 1 ended the experiment

after that decision. Participants who chose the risky lottery in Question 1, thereby exhibiting incon-

sistent preferences, were asked two alternative questions instead of Questions 2 and 3 (two individual

questions involving a choice between a sure amount and a lottery).
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