Introduction to Dynamic Stochastic General Equilibrium Models

Juan Carlos Córdoba

February 2014

© 2014, Juan Carlos Cordoba. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means without the prior written permission of the author.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Robinson Crusoe</td>
<td>3</td>
</tr>
<tr>
<td>2.1 The Environment</td>
<td>4</td>
</tr>
<tr>
<td>2.1.1 Preferences</td>
<td>4</td>
</tr>
<tr>
<td>2.1.2 Technologies</td>
<td>5</td>
</tr>
<tr>
<td>2.1.3 Resource constraint</td>
<td>6</td>
</tr>
<tr>
<td>2.2 Crusoe’s Problem</td>
<td>6</td>
</tr>
<tr>
<td>2.3 Endogenous versus Exogenous Variables</td>
<td>7</td>
</tr>
<tr>
<td>2.4 The Optimal Allocation</td>
<td>7</td>
</tr>
<tr>
<td>2.5 Data</td>
<td>9</td>
</tr>
<tr>
<td>2.6 Calibrating the Model</td>
<td>15</td>
</tr>
<tr>
<td>2.7 Results</td>
<td>16</td>
</tr>
<tr>
<td>2.7.1 Economic Growth</td>
<td>17</td>
</tr>
<tr>
<td>2.7.2 Business Cycles</td>
<td>20</td>
</tr>
<tr>
<td>2.8 Extensions</td>
<td>21</td>
</tr>
<tr>
<td>2.8.1 The Model and Its Solution</td>
<td>22</td>
</tr>
<tr>
<td>2.8.2 Calibration 1</td>
<td>24</td>
</tr>
<tr>
<td>2.8.3 Calibration 2</td>
<td>26</td>
</tr>
<tr>
<td>2.9 Social Planners and Efficient Allocations</td>
<td>27</td>
</tr>
<tr>
<td>2.10 Conclusions</td>
<td>27</td>
</tr>
<tr>
<td>2.11 Exercises</td>
<td>27</td>
</tr>
<tr>
<td>3 Competitive Markets</td>
<td>31</td>
</tr>
<tr>
<td>3.1 Description of the Market Economy</td>
<td>32</td>
</tr>
<tr>
<td>3.1.1 Households</td>
<td>32</td>
</tr>
</tbody>
</table>
CONTENTS

3.1.2 Firms ... 35
3.1.3 Banks .. 35
3.1.4 Resource Constraints 36
3.2 Equilibrium .. 36
 3.2.1 Definition of Equilibrium 36
 3.2.2 Equilibrium Allocations and Prices 37
 3.2.3 Solving for the Equilibrium 38
3.3 Data ... 40
3.4 Calibration .. 42
3.5 Assessment ... 43
3.6 Experiments .. 44
 3.6.1 The Welfare Costs of Business Cycles 45
 3.6.2 The Welfare Gains of Economic Growth 48
3.7 Walras Law .. 49
3.8 Alternative Definitions of Equilibrium 50
3.9 Payment System ... 50
3.10 Exercises ... 52
3.11 References .. 54

4 Endogenous Growth without Spillovers 57
 4.1 Learning by doing 57
 4.1.1 The Model .. 58
 4.1.2 Calibration 63
 4.2 Human capital investments (schooling) 65
 4.2.1 The Model .. 65
 4.3 Exercises ... 68

5 Endogenous Growth with Spillovers 71
 5.1 Free rider’s problem 71
 5.1.1 The ultimate breakdown of markets 72
 5.2 Endogenous growth with an expanding varieties 73
 5.2.1 The Social Planner’s Problem 74
 5.2.2 Descentralized market 76
 5.2.3 Comparing market versus efficient solutions 81
 5.2.4 Ways to obtain the first best solution in the market economy ... 82
 5.3 Growth Without Scale Effects 83
 5.3.1 Households ... 83
CONTENTS

5.3.2 Production of final good .. 84
5.3.3 Production of intermediate goods 86
5.3.4 General Equilibrium .. 88
5.4 References .. 91

6 Government .. 93
6.1 The Model ... 94
 6.1.1 Households’ problem .. 94
 6.1.2 Firms’ Problem .. 95
 6.1.3 Government .. 95
 6.1.4 Feasibility conditions 96
6.2 Equilibrium .. 96
 6.2.1 Definition of equilibrium 96
 6.2.2 Solution of the Competitive Equilibrium 96
 6.2.3 Example .. 99
6.3 Data .. 101
6.4 Calibration ... 101
6.5 Assessment ... 101
6.6 Counterfactuals .. 102
 6.6.1 Contributions to growth and business cycles 102
 6.6.2 Experiment: eliminating business cycles through gov-
 ernment purchases ... 102
6.7 Extensions ... 103
 6.7.1 Borrowing and lending constraints 104
 6.7.2 Distortionary taxation 104
6.8 Exercises ... 107

7 Heterogeneity and Inequality 109
7.1 Income inequality .. 109
7.2 Individual’s problem ... 111
7.3 Wealth inequality - Bewley Models 112
 7.3.1 Individual’s problem 112
7.4 Recursive formulation .. 116
 7.4.1 Individual’s problem 116
 7.4.2 Wealth-employment distribution 118
 7.4.3 Competitive equilibrium 119
 7.4.4 Huggett model ... 119
8 Physical Capital In Fixed Supply: Land
8.1 The Model .. 122
 8.1.1 Households’ problem 122
 8.1.2 Firms’ Problem ... 123
 8.1.3 Government .. 124
 8.1.4 Feasibility conditions 124
 8.1.5 Definition of equilibrium 125
8.2 Solution of the Competitive Equilibrium 125
 8.2.1 More on asset prices ... 127
8.3 Land Prices with Incomplete Markets 128
8.4 Credit Cycles .. 129
 8.4.1 Recursive competitive equilibrium 130
 8.4.2 Steady State ... 132
 8.4.3 Dynamics ... 133
 8.4.4 Linearized System ... 136
 8.4.5 An unanticipated shock 138
8.5 References ... 139

9 Physical capital in a small open economy 143
9.1 The Model ... 143
 9.1.1 Households’ problem 144
 9.1.2 Firms’ Problem .. 144
 9.1.3 Feasibility conditions 145
 9.1.4 Definition of equilibrium 145
9.2 Solution of the Competitive Equilibrium 145
 9.2.1 Constant Exogenous Variables 146
 9.2.2 Exogenous Technological Change 147

10 Physical Capital: Closed Economy 149
10.1 The Model ... 149
 10.1.1 Feasibility conditions 150
 10.1.2 Definition of equilibrium 150
10.2 Solution of the Competitive Equilibrium 150

11 Optimal Taxation ... 153
11.1 An economy with non-durable goods 153
11.2 An economy with capital: A 155
11.3 An economy with capital: B 159
Preface

This book is an introduction to dynamic stochastic general equilibrium models. It does not require any previous knowledge of macroeconomics, but it requires a good course in intermediate microeconomics, a good calculus course, and some knowledge of Microsoft Excel and Matlab.

The book has in mind a new generation of economists who regard macroeconomics as applied Dynamic Stochastic General Equilibrium theory (DSGE). Two distinguishing features of this approach to macroeconomics are: (i) its insistence in providing well micro-founded internally-consistent stories; and (ii) its focus on deriving overall qualitative, but perhaps more importantly, quantitative implications of the theories, and testing those predictions with actual data.

The book differs significantly from all existing macroeconomic textbooks. Its focus is on the economics rather than on the math or the econometrics. Chapters are writing in a way that is familiar to DSGE practitioners. Each chapter possesses a fully dynamic general equilibrium model, defines and characterizes the equilibrium and its qualitative properties. Then it investigates the ability of the model to explain actual data by collecting and discussing relevant data, and deriving stylized facts. The model is calibrated, tested, and then utilized to perform experiments and policy analysis. Finally, the chapter provides extensions and robustness checks.

The repetitive application of this methodology train students in all aspects of modern macroeconomics and helps develop critical thinking in an organized and constructive way. As a result, the book goes beyond the standard goal of teaching theories and concepts, to actually give students the tools required for their own advancement. In particular, by the end of this course students are better prepared to read and understand macroeconomic articles appearing in leading economic journals.

The computational exercises are an integral part of the book, as is the case in modern macroeconomics. Quantitative versions of the theories are implemented in Excel and Matlab, well-known softwares that are widely available and sufficiently powerful for simple but also complex applications. For example, chapters 8 and 12 shows how to solve Ramsey problems and optimal taxation problems in Excel.

This book also avoids the standard practice of separating the topics of economic growth and business cycles into different chapters. Instead, the book focuses on the simultaneous performance of the theory both along the
business cycle frequency but also the medium and long term frequencies. This integrated approach makes a lot of sense. For example, Chapter 2 calibrates a simple Robinson Crusoe economy in two different ways, one matching trend components and another matching business cycle components. Students learn about the key issue of identification: models can tell completely different but plausible stories about the underlying determinants of business cycles depending on how parameters are identified. They discover first hand the origins of many economic controversies. This approach also implies that I avoid using the HP filter, a popular tool among practitioners, because it separates the trend from the cycle. However, I also present and discuss results when the HP filter is utilized.