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Abstract: The ways in which exponentially increasing IT capabilities are reshaping the social sciences are
briefly reviewed. Many of these changes are primarily increases in scale and scope and do not represent
new methodology. However, one specific IT-facilitated development—multi-agent systems—holds out the
promise of fundamentally altering the ways in which social science models are conceived, built, explored
and evaluated. Here the nascent field of multi-agent social science is described and some alternative futures
for it are sketched. But it turns out that the road from IT to social science is not a one way street.
Increasingly, results from the social sciences are making their way into computer and information science.
Specifically, multi-agent systems researchers are progressively utilizing ideas from game theory (e.g.,
mechanism design), economics (e.g., auction theory), and even sociology (e.g., social networks). Today we
are witnessing the beginnings of the coevolution of IT and social science, a process that offers to invigorate
the social sciences, while simultaneously threatening their very existence as autonomous fields of inquiry.
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I Introduction: IT and the Social Sciences

When computer science and social science are mentioned in the same breath, one
typically encounters just a few typical responses. While it is unclear whether we learn
more about the subject or respondents from such answers, let us will review them here
nonetheless. Among a certain group of (usually natural) scientists it is assumed that the
intersection of these two fields is essentially empty. Since this is an objectively false
position we will dismiss it for our purposes here, although the fact that it is a rather
widespread view is certainly something of a public relations problem, for one field or
another.

A quite different response acknowledges that some social scientists work with
significant datasets—indeed, even vast ones—which serve, through information
technology, as the basis for much of what passes as empirical social science today. Each
step in the process of working with social science data, from collection, to organization,
reduction, and ultimate analysis, usually involves IT of one form or another so that the
overall process is not really even feasible without modern IT. This is the domain of the
applied social scientists, econometricians, survey researchers and so on.

A third type of respondent knows enough about the social sciences to appreciate
that in addition to empirical uses of IT, a smaller but no less important enterprise involves
model building and analysis. Such efforts come in a variety of flavors, some more
computational than others. For example, systems dynamics is an inherently computational
approach, while game theory is analytical in the main, with some computing done on the

margins.



A yet different response has it that among social theorists there is often the need
to resort to classical numerical methods in order to solve models. Here the techniques
employed look not unlike those commonly encountered in the natural sciences (Judd
[1999]).

Perhaps the final canonical response to questions about the intersection of
computing and the social sciences mentions the connection between cognitive models
and social phenomena. Here invariably the name Herbert Simon comes to the fore,
perhaps with co-workers.” As a father of artificial intelligence in computer science and
the most articulate defender of 'bounded rationality' in the social sciences, he made
contributions in both subject areas. But he also conjoined these research enterprises in
various ways, for example, through the 'behavioral theory of the firm' research group at
Carnegie Tech in the early 1960s (Cyert and March [1963]), which utilized
computational models to explore the dynamics of firms.

While each of these five views is true in its own way—indicating mostly the
methodological heterogeneity of the social sciences—none of them grasps the whole
picture. For the rapid development of information technology has sparked concomitant
developments in social science methodology, and obversely, computer science is being
invigorated today by major research areas in the social sciences—e.g., market processes,
auction design, social networks—in a way that was unimaginable even a short time ago.
Thus it is meaningful to speak of the coevolution of computer science and the social
sciences, whereby advances in one field lead to progress in the other, nucleating further

improvements in the original field, and so on. This catalytic process has already given



rise to a new subfield in the social sciences, so-called agent-based computational social
science (sometimes called ABSS), also known as agent-based computational economics
(ACE) in its economic variant. Today the face of artificial intelligence —primarily
distributed artificial intelligence (DAI) and multi-agent sytems (MAS)—is being altered
by incorporation of ideas of strategic behavior from game theory and economics. These
research communities, ABSS and ACE on the one hand and DAI and MAS on the other,
are in a state of coevolution.

Where this coevolution will lead is anyone's guess and is probably not even
fathomable more than about one generation ahead. For such coevolutionary systems have
the capacity to fundamentally alter one another and their environment in novel, creative
ways. In what follows we offer, after recapitulating recent developments, likely near term
advances. But the medium term and long term remain wide open. Speculations on such

time scales may not differ substantially from science fiction.

IT Social Science Models: More of the Same or More is Different?

Much of social science research today involves building models. This is true of both
theoretical and applied work. In the former category, models are often completely
symbolic and it is their mathematical or qualitative properties that are studied. In the
latter case, models are based on some measured data.

Most models, both historically and today, are mathematical in character. The

predominant way computation has been invoked in social science modeling is as a way to

? Interestingly, most of these people are much better known within either computer science or one of the
social sciences. Only Simon himself is revered in each domain.
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solve mathematical equations, primarily via numerical methods, although recent
advances in symbolic analysis have been significant (Wolfram [1991]). Beginning in the
late 1980s, particularly as microcomputer and workstation capabilities grew, DAI and
artificial life (AL) modeling emerged in computer science. These approaches treated
individuals—people, ants, viruses—as distinct data structures—eventually
objects —within computer memory. This approach defeated two classical problems of
conventional mathematical modeling in the social sciences: aggregation and equilibrium.
Since social systems are typically composed of a large number of individuals,
mathematical models in the social sciences have, in order to maintain mathematical
tractability, essentially always been one of two types: (1) aggregate models where the
heterogeneity of the actual population is either assumed away (e.g., representative agent
models) or averaged away by only looking at mean behavior (e.g., systems dynamics
models); (2) models written at the level of individuals in which 'solution' of the models
involves all agents engaging only in equilibrium behavior (e.g., Nash equilibria in game
theory) and all dynamic paths by which such equilibria might be achieved are neglected.
It is clear how the agent approach fixes (1), by fully-representing individuals. The way it
remedies (2) is by letting the agents interact directly, which usually amounts to out-of-
equilibrium interactions, with equilibrium obtaining only if a path to it is realized from
initial conditions.

DAI eventually grew into MAS in the mid 1990s, and these developments
combined with AL gave rise to agent-based approaches in the social sciences (ABSS,
ACE). As computer hardware increased in capacity exponentially, more sophisticated

agent models could be built, utilizing either more cognitively complex agents or greater



numbers of simple agents, or both. Thus it became possible to build more than 'toy'
models, and soon large agent populations were realized in practice’ leading naturally to
the metaphor of an artificial society.

Summarizing, the unprecedented growth in computing power has led not just to
more powerful numerical techniques, but has given rise to a new kind of computing

based on autonomous agents.

Artificial Societies as a Research Paradigm

In artificial society modeling, a population of objects is instantiated and permitted to
interact. Typically, each object represents one individual. These objects have internal data
fields that store the specific characteristics of the individuals, things like preferences,
endowments, goals and aspirations. The objects also have methods that both modify their
internal data as well as describe how they interact. Each object also has some way to
assess its own self-interest, i.e., it can rank the value to itself of alternative actions. This
self-interestedness or purposefulness makes the objects into agents.

There are four main ways in which agent-based computing adds value to the
social science modeling project. Conventional mathematical models in the social sciences
rely heavily on a suite of heroic assumptions that are certainly false empirically and
arguably do more harm than good as benchmarks. First, mainstream economics makes
much of a 'representative agent', conceiving the entire economy as simply a scaled up
version of a single decision-maker, or perhaps two agents interacting game theoretically.

This specification is easy to relax computationally by assigning random values to some

3 Models with millions of agents have been realized (Nagel and Pacuzski 1995, Axtell 1999), .
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agent fields in accord with empirical data, when available, yielding a heterogeneous
population. Second, it is the norm in economics to consider only rational agent behavior,
whereby they are able to deduce the optimal behavior not only for themselves but for all
other agents as well. Not surprisingly, in multi-agent systems having much complexity at
all, such non-procedural specifications are essentially unimplementable in practice. Thus
resort to bounded rationality is common and usually necessary. Third, modeling norms
also dictate that agents do not interact directly with other individuals, but rather either
indirectly through aggregate variables or perhaps through some idealized interaction
topology (e.g., random graph, lattice). In agent computing, however, any topology,
including empirically significant ones, can be easily implemented to serve as the basis for
agent interactions. Finally, equilibrium serves as the focal point for all solution concepts
in the social sciences. Whether equilibrium obtains or not in an agent system, the
dynamics matter and are fully modeled.

Reaseach in the social sciences—particularly economics and to lesser extents in
sociology and political science—involves (at least) two modes of inquiry. In economics
these conventionally are called 'positive' and 'normative'; the former purports to describe
economic phenomena while the latter offers suggestions for how the performance of
economic mechanisms and institutions might be improved. Of course, the dichotomy is
not so clear as this in practice, with much of what passes today as economic research first
taking an apparently positive approach but quickly descending into normative
speculation. This 'linear combination' of research modes cuts short all purely positive
ambitions which in turn hamstrings its normative value. Research that utilizes

empirically-false behavioral models, i.e., utility maximization, and then quickly draws



"policy conclusions' is quite close to what the physicist Fenyman [1983] called 'cargo cult
science': efforts that have the look and feel of real science but which do not follow the
basic principles of science. In the next section we review recent research in the social

sciences that utilizes agent computing.

Early Results with Artificial Societies

Within each of the social sciences there exist more or less active research program using
agent computing. While the nature of these applications is each somewhat idiosyncratic,
they are unified methodologically in the search for agent specifications that yield
empirically-observed (or at least empirically-plausible) social behavior.

In anthropology there are a variety of research groups active with agents. Many of
these efforts are described in the recent Santa Fe Institute volume edited by Kohler and
Gumerman [2000]. In this work the main idea is to utilize the typically very extensive
empirical data that exist for specific archaeologically-significant regions as the target of
multi-agent modeling. One then postulates and refines agent specifications that yield
simulated historical trajectories that are 'close' to the data. This research program has
been pushed farthest, perhaps, in the context of the American Southwest [Diamond
2002], where empirical data, especially on environmental histories, is particularly
complete by virtue of progress in tree ring dating techniques. While models of such
primitive societies would seem at first blush to have only passing relevance to advanced
industrial societies, they serve at least two wider purposes: (a) as necessary precursors to
models of more complex societies; (b) as significant for modern underdeveloped societies

where people live very close to the land and environmental fluctuations are often



responsible for major demographic shifts. Institutionally, within the American
Association of Anthropologists there is a special interest group on computational
modeling, with a strong representation of agent modelers.

In geography there has been rapidly growing interest in geographical information
systems (GIS), another IT-facilitated technology. Much work with GIS to date simply
amounts to animating recent or historical data on diverse geographical representations.
However, recently there has been a move to link multi-agent systems type models to GIS,
as exemplified by the recent Santa Fe Institute volume of Gimblett [2001]. The skill set
of GIS researchers is quite similar to those required for agent computing, so there should
result rapid co-evolution and perhaps coalescence of these research areas over the coming
years. Indeed, with the American Society of Geographers there are now sessions at their
annual meeting dedicated to just this intersection of techniques.

In social psychology the work of Latane et al. [1994], Nowak et al. [2000] and
Kennedy et al. [2001] has amply demonstrated the power of the agent-based approach to
social situations typically studied by psychologists. The latter takes a unique ‘swarm’
approach to cognition that is quite different from reigning approaches to learning.

In sociology a variety of more or less classical problems involving the tension
between individual incentives and group behavior have been the subject of agent-based
computational models. Many of these problems fall under the general rubric of social
dilemmas (e.g., Macy and Flache [2002]. This is an instance of a general problem that
arises across multi-agent systems, that of the micro-macro link. That is, if one knows the
agent specification fully, what are the resulting societal properties? This problem is

difficult in general but progress has been made in specific environments. A recent review



article summarizing much of the multi-agent work in sociology is Macy and Willers
[2002]. Early work includes Gilbert and Doran [1994] and Gilbert and Conte [1995].

In political science the early work by Axelrod [1984] can be seen as having kept
the early flame of multi-agent systems modeling alive in the social sciences during the
1980s. Within the past five years or so there has been an explosion of interest, with a
great range of models appearing, from state evolution through political party dynamics all
the way down to game theoretic models of social dilemmas. In the related field of
political economy there have been several papers utilizing agents; see Kollman et al.
[1997] for a survey.

Economics has probably been the most active of the social sciences to date in
applying agent computing. This probably is primarily due to the fact that
methodologically individualism —writing models in terms of individual agents —has long
been the norm among economics researchers, and because some economists have
reasonably well-developed computing skills. The general areas of economics in which
these models have been applied include to traditional markets (Kirman and Vriend
[2002]) as well as financial ones (see next paragraph), to consumer behavior (Allen and
Carroll [2001]), to social norms and conventions (Axtell and Epstein [1999], Axtell,
Epstein and Young [2001], Young [1998]), labor markets (Tesfatsion [2001]), to the
formation and evolution of firms (Axtell [1999], Luna [2000]), to public goods problems
(Kollman et al. [1998]), to macroeconomics (Bullard and Duffy [2001]) and to
international economics (Arifovic [1996]). Tesfatsion maintains an ACE website

(www.econ.iastate.edu/tesfatsi/ace.htm).
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Finance has been a particularly fertile area for the application of multi-agent
systems modeling. In this area there are extensive datasets that are extremely useful in
estimating and calibrating models. Pioneering work has been done by LeBaron [2001]
and Lux [1998], among others. These models involve heterogeneous agents who make
forecasts about future prices and take speculative positions in order to profit. These
models have had significant success in explaining empirical data. Finance is also the area
where the so-called econophysicists have begun to work, and there has been some
convergence between their efforts and agent modeling (Farmer and Lo [1999]) The
physicists wont is to work with highly idealized but tractable models, so they have made
use of agents precisely at the interface of analytical intractability.

In organizational science the recent volume of Prietula, Carley and Gasser [2000]
is a pioneering effort to bring agent computing to a field otherwise dominated by case
studies and management science/operations research-type models. Here the basic
approach is to take some organizational form or topology as given and populate each
node of the organizational chart with adaptive agents. These agents glean information
from their environment and pass messages up and down the organizational graph,
resulting in organizational performance that is quantifiable and to some extent
comparable to real-world organizations. These models have both positive and normative
uses, since elaboration of such models usually leads to recommendations for how actual
organizations can be improved.

In business there has been a variety of both academic and commercial work, with
individual projects too numerous to list here comprehensively. Painting with a broad

brush, there have been outright agent simulation projects of particular firms' operations or
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client bases, such as the highly detailed NASDAQ simulation (Darley and Outkin [2003])
and life insurance policy-holder behavior (Shumrak et al. [1999]). Agents have also been
employed in more of a normative way, to better design logistical functions, such as cargo
routing and job scheduling. The third way that agents have been utilized is commercially
is as the basis for evolutionary tools that help engineers design better systems, whether
physical (e.g., vehicles) or financial (e.g., risk management) ones. The recent articles by
Bonabeau and Meyer [2001] and Bonabeau [2002] describe many of these efforts. In the
near term it would appear that there will continue to be strong commercial demand for
agent systems.

In the arena of public policy, where even simple computational models (e.g.,
spreadsheets) have revolutionized the practice of public administration, there has been
limited adoption of agent computing to date. Recent projects include environmental
resource management (Janssen [2002]) and a model of a large urban school district
(Saunders-Newton [2002]). One interesting project at the local level, and funded with
philanthropically, is the comprehensive agent-based planning model of Trewell, Vermont
(Bernard). The software upon which this model is based has been generalized and
attempts to commercialize it as a tool for town/city planning are underway. At the state
and provincial level there are also some initial forays into agent modeling, including
regional water quality management (Moss et al [2001]) and aspects of technological
policy. At the national level there are a variety of agent models that claim some policy
relevance. For example, several non-DOD US government agencies have adopted agent
computing to better understand their client bases—typically some sub-group of U.S.

citizens. Here agent computing typically competes with some more conventional
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modeling approach, such as statistics/econometrics. Many of the early uses of agents so
far have involved circumstances where, for one reason or another, these tried an true
methodologies are either weak or altogether inappropriate, such as when a regime change
has occurred and little or no historical data are available to estimate empirical models.
Thinks tanks—primarily my own—have proffered agent models as the basis for
improving public policy (e.g., Axtell and Epsten [1999]). Despite the preliminary
character of many of these efforts, there seems to be significant appetite for this highly
visual and intuitive modeling technique in policy communities (Bourges [2002]).

There are a variety of applications of agents beyond the edges of conventional
social science, For example, in transportation science and policy, the agent-based
approach has become dominant methodological paradigm for modeling traffic flow
(Nagel and Paczuski [1996]). The highways of entire cities (e.g., Albuquerque, Dallas-
Fort Worth and Portland) have been simulated using the TRANSIMS code. Further, the
view of transportation systems as complex adaptive systems, coupling mobility, air
quality, and energy considerations has recently been articulated (Simon et al. [2003]) and
this perspective leads naturally to agent computing. In public health/epidemiology the use
of agents to more accurately model disease dynamics—taking into account realistic social
networks for instance —has proven important in AIDS models, among others (Wayner
[1996]) Here the limitations of conventional mathematical representations are clearly
very severe and apparently the only way to make progress is through agents. Because
transmission in urban environments is the dominant concern, there is even a version of
the TRANSIMS code called EPISIMS for conducting large-scale modeling experiments.

In demography the thesis that highly localized social norms of fertility importantly
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influence a population's overall demographics has recently received much attention and
seems to be broadly confirmed empirically (Kohler [2001]). Finally, the military has been
an early adopter of agent computing. A decade ago equation-based modeling of combat
situations was essentially the only method in use, with vector supercomputer time being
extensively utilized to study alternative rules of engagement, tactics, hardware, and so on.
Since then there has been a transition to agent computing techniques for modeling such
'blue vs. red' interactions, with this process accelerating in the past five years particularly.
These war-gaming environments, based solely by autonomous software agent players,
can also be configured to support human players. A related kind of war-gaming is
economic instead of lethal, and here there has also emerged a suite of agent-based tools to
accomplish this (www.SEASLLC.com).

While in none of these fields is agent computing anything like a dominant
paradigm today, in toto these many successful applications speak to the breadth and

potential of the approach.

III Multi-Agent Systems: From Engineering to Social Science

My subject so far as been the ways in which agent computing is changing the practice of
the social sciences by serving as a tool for social scientists. Here we describe how the
social sciences are altering the face of AI/DAI/MAS.

Early in the evolution of DAI from Al, there emerged the need to decentralize
agent systems in a meaningful way. Given the focus on decentralization within
microeconomces and general equilibrium theory, ideas from these fields were early on

incorporated into DAI under the rubric 'market-oriented programming' (Wellman [1995]).
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Since then there has been rapid realization that the rational model of human behavior
could serve as a possible basis for building agent systems. Subsequently, game theoretic
ideas have been systematically incorporated into MAS, and their importance has grown
dramatically in recent years until perhaps as many has half of all papers in this area are
based on these ideas (e.g., Sandholm [1999], Sen [2002], Shoham and Tennenholtz
[1997]).

However, the ideas from economics and game theory that have been utilized by
MAS researchers are not those emanating from the agent-based computing community in
the social sciences, but rather older, largely rational and equilibrium ideas. For example,
mechanism design refers to an approach to the synthesis of interaction environments in
which the desired performance of a mechanism is specified and one then figures out what
incentives to give the agents such that the (e.g., Nash) equilibria that are individually
rational and incentive compatible achieve the objective. This formalism was developed
largely in the 1980s and is today viewed by some as a viable way to design MAS (e.g.,
Parkes [2001]). Unfortunately, because such mechanisms are not credible behaviorally
for humans—real people are not fully rational!—the utility of mechanism design
principles is quite opaque. In lieu of using mechanism design ideas to create perfect
societies, researchers in ABSS and ACE are much more likely to build behaviorally
realistic systems and then study the performance of the artificial society wrt alternative
policies in the environment in question. This seems both more practical and more like the
way actual policy is formulated in the real world. Presumably MAS researchers can make
good use of new ABSS and ACE research, and the latter can surely benefit from better

understanding of what is being achieved by the former. But today these research
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communities are only tenuously joined by the interdisciplinary interests of a few
individuals.

This out-of-step evolution between MAS proper and ABSS and ACE is not
uncharacteristic of co-evolutionary environments in their early stages, and should soon be

replaced by a more synchronous co-evolution.

IV  Agents: Evolution or Revolution?

I am acutely aware that by portraying agent computing as something really new and
different for the social sciences I am exposing these ideas to grave risks. Firstly, when
outlining the features that distinguish a new methodology there is the risk that these
distinguishing features will become, in essence, walls that serve to 'ghetto-ize' the new
technique, effectively limiting the interactions between the old and new ways of working.
Secondly, in touting the apparent effectiveness of a new methodology there is always the
risk that hype will overtake substance, and expectations inflate beyond what is realistic.
In caricature the method then looks like a panacea when it is unlikely to be one.

The alternative approach is to paint an evolutionary picture, where today's new
methodology is seen as simply the logical extension of adequate but dated conventional
methodology, representing natural progress instead of abrupt change. This view is more
easily 'sold' to existing research communities and has an easier time insinuating itself into
conventional discourse.

Evolution or revolution? Continuous or abrupt change? Smooth transition or
phase transition? One is tempted to invoke Kuhn [1962] at this point and delve into the

sociology of science. However, it is possible to abstract from such abstruse
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considerations in arguing on behalf of the latter interpretation—agents as
revolutionary —by merely pointing out that the technical skills employed by those who
foment the agent revolution today are quite different from those administered to today's
graduate students, and thus those possessed by today's faculty members. A very small
subset of social science researchers knows enough about computer science and
information technology to actually perform agent-based modeling within their area of
domain expertise. This fact is simultaneously the major barrier to the systematic adoption
of these new techniques as well as the ultimate evidence that agents constitute a
discontinuous advance.

Be that as it may, many open research questions remain, and much fertile ground
between computer and information science and the social sciences remains to be
ploughed. For example, an essentially virgin territory involves incorporating results from
experiments with human subjects into agent-based models. Similarly, how best to
statistically estimate agent models from aggregate data is today largely an open question.
The ways in which emergence is dealt with between the two fields is quite different (see
Axtell 2003), as are aspects of model verification and validation. Finally, aspects of
model inter-comparision and robustness are just now coming to the fore and need to be
better understood if this new paradigm is going to have significant staying power (Hales

[2002]).

V  Coevolution: Rise or Demise of the Social Sciences?

Assuming that Moore's law will continue to be realized for the next generation or

so—say 20-30 years—agent computing will double in capabilities every 18-24 months.
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From the social science side, this ostensibly exogenous technological revolution will
permit the construction ever larger models involving ever greater numbers of more
complex agents. When one contemplates the possible desktop hardware of 2020 — just
over 16 years from now, at least 8 doubling times and some 2° = 256 times greater
power—one imagines 500 gigabytes of ultra-fast RAM, clock speeds of at least 500
gigahertz, bus speeds of perhaps 100 gigahertz, and hard disks having capacity of 25
terabytes.

This continuing revolution in IT will fundamentally alter the kinds of social
science models that can be built. It will also alter the practice of the social sciences, as
equations give way fully to agents, empirically-tested cognitive models arise, and as
decision models grounded in neuroscience emerge.

It will too forever change the face of computer science as seen through the guise
of MAS, as more powerful social science models reflect back to MAS. Overall two
distinct scenarios of coevolution seem plausible from my vantage point.

Should social science methodology adapt as agent computing evolves, one
imagines the journals of 2025 filled with papers describing multi-agent models in which
the theorems that can be proved in special cases relegated to appendices. However, if
MAS methodology becomes so pervasive (through commercial deployment) that it
substitutes for traditional private (e.g., commercial) or public (e.g., governmental)
mechanisms and institutions, then analysis of such social structures will, of necessity, be
analysis of MAS. This could lead to the displacement of traditional economics and other
social sciences, turning them into a branch of computer and information science, in much

the same way as library science has been suddenly transformed over the past decade into
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information science. How all this plays out is anyone’s guess, but surely, in the style of

the Chinese proverb, this is an exciting time to be alive.
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