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Abstract
RePast is a software framework for agent-based simulation created by Social Science
Research Computing at the University of Chicago. It provides an integrated library of
classes for creating, running, displaying, and collecting data from an agent-based
simulation. This paper is an overview of RePast's design, features, and capabilities and
describes the implementation of some of its key abstractions.1

1 Introduction

The University of Chicago's Social Science Research Computing's RePast is a software

framework for creating agent-based simulations using the Java2 language. It provides a

library of objects for creating, running, displaying, and collecting data from an agent-

based simulation. In addition, RePast includes several varieties of charts for visualizing

data (e.g. histograms and sequence graphs) and can take snapshots of running simulations

and create QuickTime movies of such. RePast borrows much from the design of the

Swarm3 simulation toolkit and can properly be termed a “Swarm-like” simulation

framework.

At its heart, RePast behaves as a discrete event simulator whose quantum unit of

time is known as a tick.4 The tick exists only as a hook on which the execution of events

can be hung, ordering the execution of the events relative to each other. For example, if

event x is scheduled for tick 3, event y for tick 4, and event z for tick 5, then event y will

                                               
1 This paper corresponds to RePast version 1.4b
2 http://java.sun.com
3 http://www.swarm.org
4 In its implementation, RePast is more like a discrete time simulator, but this will change in the next



execute after event x and before event z. If no events are scheduled for a certain tick, then

it is as if that tick never occurred. Ticks are merely a way to order the execution of events

relative to each other.  

Many RePast models have fairly simple schedules and scheduling requirements.

However, the RePast scheduling mechanism allows for more sophisticated dynamic

schedules such that the execution of an event can itself schedule other events for

execution in the future. For example, assume that the modeler is simulating the transport

of cargo and baggage by an airline through a network of airports. The “flight arrival”

event might schedule the “baggage unloading event” and so on. This flexibility in the

scheduling of events by no means prohibits the creation of more linear models where the

same event executes each tick. In fact, novice users of RePast can easily create models

without any knowledge of this scheduling mechanism. The creation and scheduling of

events still occurs, although it is hidden from the user.

2 Agent-based Simulation with RePast

What then does this notion of ticks and discrete events mean in the context of agent-

based simulation? The typical RePast model contains a set of agents. These agents may

or may not be homogenous, or perhaps these agents are arranged in a hierarchy (a firm

and its employees, for example). Regardless of their composition, each agent has some

behavior, the interactions of which a modeler is interested in exploring. Assume that a

modeler is working with a spatial iterated prisoner's dilemma type cooperation game

played on a two dimensional grid. The agent's behavior would then take place in two

phases. In the first, each agent would find its neighbors on the grid and play the game

                                                                                                                                           
release. Regardless, it appears to the user as a discrete event simulator.



with each neighbor using its current strategy.  After all the agents had executed this first

phase, each agent would then choose a strategy for the next round based on the payoffs

from phase one.

In this sort of simulation, the same set of agent behavior gets executed every tick,

and what gets scheduled then is an event or, as it is called in RePast, an action. This

action first executes the phase one behavior for each agent and then the phase two

behavior. As mentioned above, the modeler can have more or less direct control over the

scheduling of events in her model. This particular example is amenable to RePast's auto-

scheduling which allows the user to define three phases of behavior, a preparatory, an

execution, and a post- or cleanup phase. RePast then schedules these in the appropriate

order to occur every tick. Here, the neighbor finding and game playing would constitute

the execution phase, and the strategy choice would constitute the post- or cleanup phase.

Alternatively, the modeler can manually schedule this two-phase behavior as a single

action. The first part of the action executes the neighbor-finding and game playing and

the second part, the strategy choice.5

RePast also allows for more complex dynamic scheduling. A simulation of this sort

typically schedules a single action to execute at the first tick, and this action then

schedules another action to execute at some future tick. The mousetrap demonstration6

simulation included with the RePast distribution is a good example of a dynamically

scheduled simulation. What is being modeled here is a field of mousetraps on which

some number of ping-pong balls are resting. When a mousetrap triggers, it throws its

                                               
5 The Endogenous Neighborhoods and Norms (enn) demonstration model in the RePast distribution is

similar to this example (manually scheduled).
6 This is a port of the Swarm simulation of the same name and is itself a simulation of a demonstration of

nuclear fission that used to take place in high school gymnasiums.



balls into the air and they then land on other mousetraps causing them to trigger. This

cascading reaction continues until no more balls are in the air. The schedule here is fairly

simple although its actual implementation in code is more complex than the linear

example given above. The agent (the mousetrap) behavior is the triggering of other

mousetraps, and this trigger behavior is defined as follows: find some number of

neighboring mousetraps some distance away from the triggered mousetrap; schedule the

execution of this trigger behavior on these mousetraps.7 The simulation begins with a

single trigger behavior executed on a randomly chosen mousetrap scheduled for the first

tick. All the remaining behavior is scheduled dynamically and stochastically from within

the simulation itself.

In short, a RePast simulation is primarily a collection of agents of any type and a

model that sets up and controls the execution of these agents' behaviors according to a

schedule. This schedule not only controls the execution of agent behaviors, but also

actions within the model itself, such as updating the display, recording data, and so forth.

Scheduling can be automated via the model or manually implemented by the modeler. In

addition, this model is typically responsible for setting up and controlling simulation

visualization, data recording and analysis. The model is said to be composed of these

additional components (the schedule, the display, and so forth).

3 History

RePast was initially conceived of as a library of Java classes that would work together

with and simplify the Swarm simulation framework. This initial conception was the result

                                               
7   The number of mousetraps, corresponding to the number of ping-pong balls, and their distance from
     the triggered mousetrap is a user-specifiable parameter of the model.



of University of Chicago researchers’ concerns with the complexity of both Swarm and

Objective-C and our respect for the maturity and elegance of the Swarm API. This notion

of RePast as an extension to Swarm was soon abandoned for a variety of reasons and

made partially redundant with the release of Java Swarm (a Java layer running on top of

the Swarm kernel and released by the Swarm Development Group). Prior to the release of

Java Swarm, we had begun some exploration into developing an independent framework

completely written in Java, but borrowing several of the key abstractions present in

Swarm. Convinced of this framework’s viability and usefulness to University of Chicago

researchers, the initial exploration grew into the current version of RePast. Today, RePast

is used inside the University of Chicago and far beyond.

4 Design Goals

RePast’s design goals grew out of our constituency's (University of Chicago researchers)

concern with ease of use and the desire for a short learning curve, as well as our concerns

about extensibility and robustness. We tried to meet these larger goals through the

following design goals: abstraction of simulation infrastructure, extensibility, and “good

enough” performance.

Abstraction

RePast abstracts most of the key elements of agent-based simulation and represents them

as a Java class or classes. These classes cooperate to make a framework for creating

agent-based simulations. Much of the design of this cooperation makes use of design



patterns8 and achieves some small measure of elegance and clarity due to it. The current

1.4beta version of RePast provides a ready-to-use class or classes for most of the

common infrastructural abstractions of an agent-based simulation (e.g., scheduling,

display, data collection, and so forth) and a variety of generic components for

constructing representational elements. These generic components include such things as

agent spaces (grids, torii, “soups,” etc.) and a few generic agent types. RePast is

particularly strong in its support for network (social and otherwise) simulations. This

support is both infrastructural (graph layouts, network generation, saving and loading)

and representational (default node and edge classes).

Extensibility

As a design goal, extensibility grows largely from the success of the design and

implementation of key abstractions, such that the modeler can use these abstractions as

the basis for her own models. In making use of some of the Swarm abstractions, RePast

inherits a time-tested design that contributes to its extensibility. By implementing some

of these abstractions using design patterns extensibility is again enhanced. For example,

the scheduling mechanism (the Schedule object and the various action classes) is

implemented according to the composite design pattern, which allows client code to treat

individual actions and the compositions of those actions uniformly. This provides clarity

to the scheduling mechanism and allows it to be easily extended in the future.

Extensibility is also provided by the use of Java as an implementation language. Object-

oriented languages easily lend themselves to the creation of extensible frameworks

                                               
8 Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, Mass.: Addison-Wesley.



through the use of inheritance and composition.

“Good Enough” Performance

“Good enough” performance refers to a level of performance that is acceptable when

weighed against the other benefits of the toolkit. While performance optimizations were

not part of the initial design, care was taken to minimize object creation and achieve

acceptable display speed. This is not to say that performance concerns are ignored; there

are incremental performance improvements with every release. RePast offers

performance comparable to similar frameworks and will only get faster with the continual

improvement of Java virtual machines.

As a result of these goals, Repast is robust, extensible, and fairly easy to use,

although the modeler must still learn Java.9 However, choosing Java as an

implementation language has its own benefits. Java eliminates the kind of memory leaks

associated with C, C++, and Objective-C, a particular problem for long-running

simulations. Java is well documented and there are many instructional books devoted to

it, and its cross platform design also makes installation and setup on a variety of

platforms quite simple.

5 Package overview

Java allows the programmer to organize his or her code into packages. The package

system is primarily used to avoid namespace conflicts so that two Java classes with the

same name will not be confused. However, it is also used to partition code into coherent

units. RePast consists of 210 classes organized into 9 packages as well as several



demonstration simulations. A modeler will always use a model class from the engine

package and classes from other packages where required. The most important of these

packages are described below.

Analysis

The classes in the analysis package are used to gather, record, and chart data.  Using

these classes a modeler defines data sources and hooks up recording or charting classes to

these sources. Data can be easily recorded in a tabular or customized format and charted

in a sequence graph, histogram or user-defined plot.

Engine

The engine classes are responsible for setting up, manipulating, and driving a simulation.

The SimModel interface is the super-class for all models written with RePast. A partial

implementation of SimModel, the SimModelImp, class is provided and can be used as the

base class for most, if not all, models written with Repast. Alternatively, the

SimpleModel class can be used to automate event scheduling as described above. The

controller classes (BaseController, Controller, and BatchController) are responsible for

handling user interaction with a simulation either through a GUI or by automating such

interaction through the use of a batch parameter file. In addition, the engine package

contains the classes that make up the scheduling mechanism.

Event

                                                                                                                                           
9 This should change soon with the introduction of the Evolver rapid simulation development environment.



As mentioned above, the schedule is responsible not only for the execution of agent

actions, but also actions within the model itself, such as display updates and so on.

However, not all communication between parts of a model is done via the scheduler. A

small portion is performed using an event mechanism; these classes together with those

in the engine package constitute this event mechanism. These classes are used internally

by RePast and  are not of real concern to the modeler.

Games

The games package contains a few classes for implementing prisoner’s dilemma-type

cooperation games.

Gui

The gui classes are responsible for the graphical animated visualization of the simulation

as well as providing the capability to take snapshots of the display and make QuickTime

movies of the visualization as it evolves over time. The various *Display classes work in

conjunction with the classes in the space package to display these spaces appropriately.

Via a DisplaySurface, the LocalPainter class handles the actual display of these spaces on

the screen, and the DisplaySurface itself allows for the probing of the displayed objects.

Probing, left clicking on the visualization of a simulation object, introspects that object

(an agent for example) and displays its current parameters in a separate window. The gui

package also contains the graph layouts used to visualize networks and an extensible

Display class that can be used to build custom displays.

Network



The network package contains the core classes used to build network simulations. These

include default node and edge classes working together such that a node “knows” its

incoming and outgoing edges and an edge “knows” its source and target node. The

NetworkFactory class is used to load networks from a file in a variety of formats as well

as to generate networks (Small World, Random Density, and Square Lattice). Networks

can be recorded as adjacency matrices in a variety of formats using the NetworkRecorder.

In addition there are some utility classes that can be used to collect some simple yet

useful network statistics.

Space

In an agent simulation, agents often have some sort of spatial relationship to each other.

The space package contains classes that instantiate various sort of spacial relationships.

The classes themselves are essentially container classes that represent various types of

spaces (two-dimensional grids, torii, single or multiple occupancy, and so forth)

accessible through the appropriate interfaces. For example, the grid spaces allow objects

to be inserted and retrieved based on x and y coordinates. Spaces work in conjunction

with the display classes in the gui package to present a visualization of the space and the

objects (e.g., agents) that it contains.

Util

Util, the utilities package, contains a variety of utility classes used both internally by

RePast and by the modeler. The two most important classes here are Random which

encapsulates a large number of random number distributions and operations on them, and



SimUtilities which contains a number of static methods that shuffle lists, display dialogs,

update probes and so forth.

In addition to its own classes, Repast also makes use of those in external libraries,

most notably the Colt library.10 The Colt library provides random number generation for

RePast (encapsulated in the Random class) through its implementation of the

MersenneTwister (MT19937), one of the strongest pseudo-random number generators.

Various other random number generators and distributions are also found in the Colt

library and are thus available for use with RePast. RePast also make use of the byte code

generation facilities in the Trove library.11

6 Inside RePast

This section discusses how the scheduling and display mechanisms are implemented. The

scheduling mechanism is a good example of how RePast's internals are implemented,

while the display mechanism is a good example of how a modeler is able to compose his

or her model using the pieces that RePast provides.

Scheduling Mechanism

The scheduling mechanism is responsible for all the user-defined state changes within a

RePast simulation. As described above, scheduling consists of setting up and executing

actions (agent behavior and so forth) at some specific time relative to other actions.  As

implemented in Java, this translates into setting up and executing method calls on objects

                                               
10 http://nicewww.cern.ch/~hoschek/colt/index.htm
11 http://opensource.go.com/Trove



at some specified time. RePast represents these method calls separately from the objects

themselves through the BasicAction class. A BasicAction consists of a single abstract

public void execute() method. Any classes that sub-class a BasicAction must implement

this method, and it is in this method that the actual method call or calls to be scheduled

should occur.  So, for example, if your agent behavior is encapsulated by a step method,

then the BasicAction's execute method would iterate through all the agents and call this

step method on each one.  This BasicAction, and not the step methods themselves, then

gets scheduled for execution at some specific tick.

BasicAction-s can be created in two ways, either by the modeler or implicitly by a

Schedule object. In the first, the modeler will sub-class a BasicAction, implementing the

execute method accordingly. This sub-class is usually created as inner class (anonymous

or otherwise). In the second, the modeler provides an object reference and the name of

the method she wishes to execute as arguments to a Schedule object's schedule method.

The schedule object will then dynamically create and load the byte-code for a

BasicAction class whose execute method calls the named method on the specified object.

For example, suppose a model class contains a method named “run” in which all the

agents are iterated through calling a method named “step” on each agent. To schedule

this run method, the modeler passes the name of the method, that is, “run,” and a

reference to the model to the Schedule object. No sub-classing is necessary; the Schedule

object does all the work. Furthermore, because the byte-code for the BasicAction is

dynamically created, there is no performance penalty, as there might be with a solution

that relied on reflection.

As mentioned above, the scheduling mechanism implements the composite design



pattern (see figure 1). The scheduling objects are composed into a tree structure that

represents a part-whole hierarchy. In this context the BasicAction class (that is,

anonymous and otherwise user-defined classes that inherit from BasicAction) is the

component and the Schedule and ActionGroup classes are the composites or containers.

As containers, the Schedule and ActionGroup objects primarily store the primitive or leaf

components, although they can also store other Schedule or ActionGroup objects.

Schedule objects store BasicAction-s and associated information about when to execute

these BasicAction-s. ActionGroup-s allow for the grouping of BasicAction-s into groups

of conceptually similar actions and provide methods to determine the order of execution

of the BasicAction-s within that ActionGroup. 

The operation that all these objects share is the execute method mentioned above.

The primitive components implement the execute method to call the actual methods on

the simulation objects, while the containers implement execute to call execute on their

children. In addition to this execute method, the Schedule object contains other methods

to add BasicAction-s to itself together with associated scheduling information.

BasicAction-s can be scheduled to execute every iteration beginning at specified time,

once at some specific time, repeatedly at a specified interval, once at a pause, or at the

end of a simulation run.  Regardless of how a BasicAction is created the methods for

scheduling them are the same.



Figure 1

The master schedule that controls the execution of all its children will be created in

a model implementing the SimModel interface primarily by extending SimModelImp.

BasicAction-s will then be created and added to this Schedule object together with their

associated scheduling information. When the scheduling mechanism is automated and

hidden, the SimpleModel class creates a master Schedule and schedules some predefined

methods representing the pre-, execution, and post- phases to this Schedule object. All the

modeler must do then is fill in the implementation of these predefined methods.

Schedules, BasicAction-s and so forth remain hidden.

BasicAction

+execute()

ActionGroup

+execute()
+addAction(action: BasicAction)

Schedule

+execute()
+scheduleActionBeginning(tick: long, action: BasicAction): BasicAction
+scheduleActionBeginning(tick: long, target: Object, methodName: String): BasicAction
+scheduleActionAt(tick: long, action: BasicAction): BasicAction
+scheduleActionAt(tick: long, target: Object, methodName: String): BasicAction
+scheduleActionAtInterval(tick: long, action: BasicAction): BasicAction
+scheduleActionAtInterval(tick: long, Object: target, methodName: String): BasicAction
+scheduleActionAtEnd(action: BasicAction): BasicAction
+scheduleActionAtEnd(target: Object, String: methodName): BasicAction
+scheduleActionAtPause(action: BasicAction): BasicAction
+scheduleActionAtPause(target: Object, methodName: String, parameter: BasicAction)
+removeAction(action: BasicAction): BasicAction

AnInnerClass

+execute()

-actions

1..*

-actionQueue

1..*

GeneratedClass

+execute()

forall ba in actionQueue
  ba.execute()

forall ba in actions
  ba.execute()



Regardless of how the actual master Schedule is created and used, one of the

controller classes mentioned above then begins a loop that calls, among other things, the

execute method of this Schedule object. At this point the time or tick count is one. The

Schedule object then builds the execution queue for the current time based on the

scheduling information associated with each basic action, adding its child BasicAction-s

to the queue if appropriate. It then iterates over this queue calling execute on the

BasicAction-s in the queue. Consequently, the primitive or leaf component BasicAction-s

will then call methods on actual simulation objects thus changing the state of the

simulation. When the Schedule object finishes iterating over the execution queue, the tick

count is incremented. It is this tick count against which BasicAction-s are scheduled for

execution.12 This design and implementation provides a clear and flexible scheduling

mechanism. Complicated schemes of execution can be created through the composition

of BasicAction-s, ActionGroup-s, and Schedule-s, while for simpler models or novice

users the entire scheduling mechanism can be kept hidden.

Display Mechanism

The display mechanism is responsible for displaying a visualization of a running

simulation in real time. The mechanism primarily consists of the space classes from the

space package, the displays corresponding to those spaces, the SimGraphics class, the

various drawable interfaces (Drawable, Drawable2DNode, and so forth) associated with

the display and spaces classes, a LocalPainter and a DisplaySurface, all from the gui

package. As mentioned above, spaces are ordered containers for simulation objects, most

                                               
12 The above is a somewhat simplified, omitting the description of a few simple optimizations in the

creation of the event queue.



likely agents. For example, the space class Object2DTorus represents a two-  dimensional

toroidal grid where each grid cell can contain an object. Each display class contains a

single space and provides an interface and implementation for displaying the objects

contained within that space. If the objects within a space are to be displayed, those

objects must be of a certain type. The various drawable interfaces define these types, and

as interfaces they can be implemented by any type of object. The displays also implement

the Probeable interface, taking screen coordinates, converting those coordinates into

coordinates relevant to their topology and returning a list of objects at those coordinates.

The SimGraphics class is a wrapper around java.awt.Graphics2D and as such simplifies

the drawing of circles, rectangles, text, colors and so forth. The LocalPainter is a

container for displays, and it handles the actual drawing of these displays, double

buffering, and Graphics2D manipulation. The DisplaySurface handles probing and is the

public interface to the drawing mechanism and the LocalPainter in particular. (A modeler

will add displays to a DisplaySurface, which then adds them to the LocalPainter.)

Creating a RePast display is thus a matter of deciding on a space or spaces,

implementing the drawable interfaces appropriate to these spaces in the objects that the

spaces contain, adding these spaces to the appropriate displays, and then adding these

displays to a DisplaySurface. RePast provides all of these except, naturally enough, the

agents or objects inhabiting the space. The modeler “plugs-in,” that is, composes her

model from these pieces, and while it sounds complicated the actual code is only a few

lines long.

Given this structure, the actual drawing sequence is as follows. The

scheduling mechanism calls the updateDisplay method on the DisplaySurface object.



Having received this call, the DisplaySurface object tells the LocalPainter to paint itself.

The LocalPainter then creates a java.awt.Graphics2D object from an off-screen

BufferedImage, and wraps a SimGraphics object around this Graphics2D object. It then

calls the drawDisplay(SimGraphics g) method on each display it contains, passing this

SimGraphics object as an argument. The display then either gets a list of all the objects in

the space it contains from that space, or if a list of objects was added to the display, that

list is used.13  The display then iterates through this list, requesting some drawing

information (coordinates, size, etc.) from each object in the list through the appropriate

drawable interface, and prepares the passed-in SimGraphics object using this information.

Each drawable object in the list is then told to draw itself, using the passed-in

SimGraphics object. When the painter has finished iterating through all the displays, it

draws the off-screen image to the screen, and the drawing is finished. Network

visualization is largely similar with the addition of GraphLayout-s that layout the graph

prior to drawing it.

The structure of the display mechanism is thus one of composition where each

container delegates the actual drawing responsibilities to its children. This provides

flexibility and extensibility, although the tight conceptual coupling between spaces,

displays, and drawable interfaces means that such extensibility requires the

implementation of several classes and interfaces.

7 The Future

                                               
13 In most cases, the modeler has the option of adding a list of objects to be displayed directly to the

displays together with the space. The list of objects received from the space may often contain null
objects if that space is sparsely populated. Consequently, it is frequently more efficient to use the
passed-in list, rather than that received from the space.



Current work on RePast is focused on the Evolver, a rapid simulation development

environment for creating network simulations. Using a drag-and-drop model, a

simulation can be graphically composed out of various pieces (pre-defined models,

agents, analysis components, etc.). Any desired behavior not included in the pre-defined

components can be specified using NQPython (Not Quite Python), a Python-like14

language specifically designed to integrate well with RePast and much simpler than Java.

We also hope to expand Evolver's capabilities beyond network models. Evolver is

scheduled for public release in late 2001, early 2002. In addition to work on the Evolver,

updates and improvements to the scheduler are planned. Among these are support for

fractional within-tick scheduling and the incorporation of FAST, a distributed parallel

scheduling and execution engine.

                                               
14 http://www.python.org


