
CONSUMER CHOICE

1. THE CONSUMER CHOICE PROBLEM

1.1. Unit of analysis and preferences. The fundamental unit of analysis in economics is the economic agent.
Typically this agent is an individual consumer or a firm. The agent might also be the manager of a public
utility, the stockholders of a corporation, a government policymaker and so on.

The underlying assumption in economic analysis is that all economic agents possess a preference ordering
which allows them to rank alternative states of the world.

The behavioral assumption in economics is that all agents make choices consistent with these underlying
preferences.

1.2. Definition of a competitive agent. A buyer or seller (agent) is said to be competitive if the agent
assumes or believes that the market price of a product is given and that the agent’s actions do not influence
the market price or opportunities for exchange.

1.3. Commodities. Commodities are the objects of choice available to an individual in the economic sys-
tem. Assume that these are the various products and services available for purchase in the market. Assume
that the number of products is finite and equal to L (� =1, ..., L). A product vector is a list of the amounts of
the various products:

x =

⎡
⎢⎢⎢⎣
x1

x2

...
xL

⎤
⎥⎥⎥⎦

The product bundle x can be viewed as a point in RL.

1.4. Consumption sets. The consumption set is a subset of the product space RL, denoted by XL ⊂ RL,
whose elements are the consumption bundles that the individual can conceivably consume given the phys-
ical constraints imposed by the environment. We typically assume that the consumption set is X = R L

+ = {x
∈ RL: x� ≥ 0 for � = 1, ... , L}.

1.5. Prices. We will assume that all L products are traded in the market at dollar prices that are publicly
quoted. How they are determined will be discussed later. The prices are represented by a price vector

p =

⎡
⎢⎢⎢⎣
p1

p2

...
pL

⎤
⎥⎥⎥⎦ ∈ RL

For now assume that all prices are strictly positive, i.e. p� >> 0. We will also assume that all consumers
are price takers in the sense that they cannot influence the price at which they buy or sell a product.
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1.6. Income or wealth. Assume that each consumer has wealth equal to m i or the representative consumer
has wealth m.

1.7. Affordable consumption bundles. We say that a consumption bundle x is affordable for the represen-
tative consumer if

p x = p1 x1 + p2 x2 + · · · + pLxL
≤ m (1)

If x is also an element of RL
+ , then the set of feasible consumption bundles is x ε RL

+ : px ≤ m. This is
called a Walrasian budget set and is denoted Bp,m.

1.8. Preferences. We assume a preference relation over products � with the following properties
1: complete in that for all x1, x2 ∈ X, we have x1 � x2 or x2 � x1 (or both)
2: transitive in that ∀ x1, x2, x3 ε X, if x1 � x2 and x2 � x3 then x1 � x3.
3: locally nonsatiated in that for every x1 ∈ X and every ε > 0, there is x2 ∈ X such that ||x2 - x1 ≤ ε||

and x2 � x1.
4: continuous in that for any sequence of pairs

{ (xn1 , x
n
2 ) }∞n=1 with x

n
1 � xn2∀ n,

x1 = lim
n→∞xn1 , and x2 = lim

n→∞ xn2 ,

we have x1 � x2.

1.9. Existence of a utility function. Based on the preferences defined in 1.8, there exists a continuous utility
function v(x) that represents � in the sense that x1 � x2 iff v(x1) ≥ v(x2).

1.10. Convexity. We often assume that preferences are convex in the sense that if x1 � x2 , then for 0 ≤ λ ≤
1, λx1 + (1-λ)x2 � x1. This implies that indifference curves are convex to the origin. If the utility function is
quasi-concave, then the indifference curves will be convex and vice versa.

2. THE UTILITY MAXIMIZATION PROBLEM

2.1. Formal Problem. The utility maximization problem for the consumer is then as follows

max
x≥ 0

u = v(x)

s.t. px ≤ m
(2)

where we assume that p >> 0, m > 0 and X = RL
+ .

This is called the primal preference problem. If we have smooth convex indifference curves and an inte-
rior solution, then the problem can be solved using standard Lagrangian techniques. Alternatively, Kuhn-
Tucker methods can be used. The Lagrangian function is given by

L = v(x) − λ (Σni=1 pi xi − m ) (3)
The first order conditions are

∂ v

∂ xi
− λ pi = 0, i = 1, 2, . . . , n

− Σni=1 pi xi + m = 0
(4)

The value of λ is the amount by which L would increase given a unit relaxation in the constraint (an
increase in income). It can be interpreted as the marginal utility of expenditure. This units of this are of
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course arbitrary. The solution to 2 is given by x(p,m) = g(p,m). These functions are called Marshallian
demand equations. Note that they depend on the prices of all good and income. Based on the structure
of preferences and the nature of the optimization problem, they will have certain properties which we will
discuss shortly.

2.2. Cobb-Douglas Example. Consider a utility function given by

u = v(x) = xα1
1 xα2

2 (5)

We usually assume that α i > 0. To maximize utility subject to a budget constraint we obtain we set up a
Lagrangian function.

L = xα1
1 xα2

2 − λ [ p1 x1 + p2 x2 − m ] (6)

Differentiating equation 6 we obtain

∂ L

∂x1
=
α1 x

α1
1 xα2

2

x1
− λ p1 = 0 (7a)

∂ L

∂x2
=
α2 x

α1
1 xα2

2

x2
− λ p2 = 0 (7b)

∂ L

∂ λ
= − [ p1 x1 + p2 x2] + m = 0 (7c)

Take the ratio of the 7a and 7b to obtain

α1 x
α1
1 x

α2
2

x1

α2 x
α1
1 x

α2
2

x2

=
p1

p2

⇒ α1 x2

α2 x1
=
p1

p2

(8)

We can now solve the equation for the quantity of good 2 as a function of the quantity of good 1 and the
prices of both goods. Doing so we obtain

x2 =
α2 x1 p1

α1 p2
(9)

Now substitute 9 in 7c to obtain

∂ L

∂ λ
= − [ p1 x1 + p2 x2] + m = 0

⇒ p1 x1 + p2
α2 x1 p1

α1 p2
=m

⇒ p1 α1 x1

α1
+

α2 x1 p1

α1
=m

⇒ p1 x1

α1
(α1 + α2 ) =m

⇒ x1 =
α1

(α1 + α2 )
m

p1

(10)

Similarly for x2 so that we have
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x2 =
α2

(α1 + α2 )
m

p2
(11)

Note that demand for the kth good only depends on the kth price and is homogeneous of degree zero in
prices and income. Also note that it is linear in income. This implies that the expenditure elasticity is equal
to 1. This can be seen as follows.

x1 =
α1

(α1 + α2 )
m

p1

⇒ ∂ x1

∂ m

m

x1
=
[

α1

(α1 + α2 )
1
p1

] [
m

α1
(α1 + α2 )

m
p1

]
= 1

(12)

We can find the value of the optimal u by substitution

u = xα1
1 xα2

2

=
(
m

p1

[
α1

α1 + α2

])α1 (m
p2

[
α2

α1 + α2

])α2

= mα1+α2p−α1
1 p−α2

2 αα1
1 αα2

2 (α2 + α2)−α1−α2

(13)

This can also be written

u = xα1
1 xα2

2

=
[
m

p1

(
α1

α1 + α2

)]α1
[
m

p2

(
α2

α1 + α2

)]α2

=
(

α1

α1 + α2

)α1
(

α2

α1 + α2

)α2
(
m

p1

)α1
(
m

p2

)α2

(14)

For future reference note that the derivative of the optimal u with respect tom is given by

u = mα1+α2p−α1
1 p−α2

2 αα1
1 αα2

2 (α2 + α2)−α1−α2

∂u

∂m
= (α1 + α2)mα1+α2−1p−α1

1 p−α2
2 αα1

1 αα2
1 (α2 + α2)−α1−α2

= mα1+α2−1p−α1
1 p−α2

2 αα1
1 αα2

1 (α2 + α2)1−α1−α2

(15)

We obtain λ by substituting in either the first or second equation as follows

α1x
α1−1
1 xα2

2 − λp1 = 0

⇒ λ =
α1x

α1−1
1 xα2

2

p1

α2x
α1
1 xα2−1

2 − λp2 = 0

⇒ λ =
α2x

α1
1 xα2−1

2

p2

(16)
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If we now substitute for x1 and x2, we obtain

λ =
α1x

α1−1
1 xα2

2

p1

x1 =
m

p1

[
α1

α1 + α2

]

x2 =
m

p2

[
α2

α1 + α2

]

⇒ λ =
α1

(
m

p1

[
α1

α1 + α2

])α1−1 (
m

p2

[
α2

α1 + α2

])α2

p1

=
α1m

α1+α2−1p1−α1
1 p−α2

2 αα1−1
1 αα2

2 (α1 + α2)
1−α1−α2

p1

= mα1+α2−1p−α1
1 p−α2

2 αα1
1 αα2

2 (α1 + α2)
1−α1−α2

(17)

Thus λ is equal to the derivative of the optimal u with respect tom.

To check for a maximum or minimum we set up the bordered Hessian. The bordered Hessian in this
case is

HB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

We compute the various elements of the bordered Hessian as follows
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L = xα1
1 xα2

2 − λ[p1x1 + p2x2 −m]

∂L

∂x1
= α1x

α1−1
1 xα2

2 − λp1

∂L

∂x2
= α2x

α1
1 xα2−1

2 − λp2

∂2L

∂x2
1

= (α1)(α1 − 1)xα1−2
1 xα2

2

∂2L

∂x1∂x2
= α1α2x

α1−1
1 xα2−1

2

∂2L

∂x2
2

= (α2)(α2 − 1)xα1
1 xα2−2

2

∂g

∂x1
= p1

∂g

∂x2
= p2

The derivatives of the constraints are constants. The bordered Hessian is given by

HB =

⎡
⎢⎢⎢⎢⎣

(α1)(α1 − 1)xα1−2
1 xα2

2 α1α2x
α1−1
1 xα2−1

2 p1

α1α2x
α1−1
1 xα2−1

2 (α2)(α2 − 1)xα1
1 xα2−2

2 p2

p1 p2 0

⎤
⎥⎥⎥⎥⎦ (19)

To find the determinant of the bordered Hessian expand by the third row as follows

|HB| = (−1)4p1

∣∣∣∣∣
α1α2x

α1−1
1 xα2−1

2 p1

(α2)(α2 − 1)xα1
1 xα2−2

2 p2

∣∣∣∣∣+ (−1)5p2

∣∣∣∣∣
(α1)(α1 − 1)xα1−2

1 xα2
2 p1

α1α2x
α1−1
1 xα2−1

2 p2

∣∣∣∣∣+ 0

= p1

∣∣∣∣∣ α1α2x
α1−1
1 xα2−1

2 p1

(α2)(α2 − 1)xα1
1 xα2−2

2 p2

∣∣∣∣∣− p2

∣∣∣∣∣(α1)(α1 − 1)xα1−2
1 xα2

2 p1

α1α2x
α1−1
1 xα2−1

2 p2

∣∣∣∣∣
= p1p2α1α2x

α1−1
1 xα2−1

2 − p2
1(α2)(α2 − 1)xα1

1 xα2−2
2

− p2
2(α1)(α1 − 1)xα1−2

1 xα2
2 + p1p2α1α2x

α1−1
1 xα2−1

2

= 2p1p2α1α2xα1−1
1 xα2−1

2 − p2
1(α2)(α2 − 1)xα1

1 xα2−2
2 − p2

2(α1)(α1 − 1)xα1−2
1 xα2

2

(20)

For a maximum we want equation 20 to be positive. Rewriting it we obtain
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2p1p2α1α2x
α1−1
1 xα2−1

2 − p2
1(α2)(α2 − 1)xα1

1 xα2−2
2 − p2

2(α1)(α1 − 1)xα1−2
1 xα2

2 > 0 (21)

We can also write it in the following convenient way

2p1p2α1α2x
α1−1
1 xα2−1

2

+α2p
2
1x
α1
1 xα2−2

2 − α2
2p

2
1x
α1
1 xα2−2

2

+α1p
2
2x
α1−2
1 xα2

2 − α2
1p

2
2x
α1−2
1 xα2

2 > 0

(22)

To eliminate the prices we can substitute from the first-order conditions.

p1 =
α1x

α1−1
1 xα2

2

λ

p2 =
α2x

α1
1 xα2−1

2

λ

This then gives

2
(
α1x

α1−1
1 xα2

2

λ

)(
α2x

α1
1 xα2−1

2

λ

)
α1α2x

α1−1
1 xα2−1

2

+α2

(
α1x

α1−1
1 xα2

2

λ

)2

xα1
1 xα2−2

2 − α2
2

(
α1x

α1−1
1 xα2

2

λ

)2

xα1
1 xα2−2

2

+α1

(
α2x

α1
1 xα2−1

2

λ

)2

xα1−2
1 xα2

2 − α2
1

(
α2x

α1
1 xα2−1

2

λ

)2

xα1−2
1 xα2

2 > 0

(23)

Multiply both sides by λ2 and combine terms to obtain

2α2
1α

2
2x

3α1−2
1 x3α2−2

2

+α2
1α2x

3α1−2
1 x3α2−2

2 − α2
2α

2
1x

3α1−2
1 x3α2−2

2

+α1α
2
2x

3α1−2
1 x3α2−2

2 − α2
1α

2
2x

3α1−2
1 x3α2−2

2 > 0

(24)

Now factor out x3α1−2
1 x3α2−2

2 to obtain

x3α1−2
1 x3α2−2

2

(
2α2

1α22 + α2
1α2 − α2

2α
2
1 + α1α

2
2 − α2

1α
2
2

)
>0

⇒ x3α1−2
1 x3α2−2

2

(
α2

1α2 + α1α
2
2

)
>0

(25)

With positive values for x1 and x2 the whole expression will be positive if the last term in parentheses is
positive. Then rewrite this expression as

(
α2

1α2 + α1α22
)
> 0 (26)

Now divide both sides by α2
1α

2
2 (which is positive) to obtain(

1
α2

+
1
α1

)
> 0 (27)



8 CONSUMER CHOICE

3. THE EXPENDITURE (COST) MINIMIZATION PROBLEM

3.1. Basic duality formulation. The fundamental (primal) utility maximization problem is given by

max
x≥ 0

u = v(x)

s.t. px ≤ m
(28)

Dual to the utility maximization problem is the cost minimization problem

min
x≥ 0

m = px

s.t. v(x) = u
(29)

3.2. Marshallian and Hicksian demand functions. The solution to equation 29 gives the Hicksian demand
functions x = h(u, p). The Hicksian demand equations are sometimes called ”compensated” demand equa-
tions because they hold u constant. The solutions to the primal and dual problems coincide in the sense
that

x = g (p, m) = h (u, p) (30)

3.3. Indirect objective functions. We can substitute the optimal levels of the decision variables as functions
of the parameters back into the objective functions to obtain the indirect objective functions. For the primal
problem this gives

u = v (x1, x2, · · · , xn ) = v [g1 (m, p), g2 (m, p), . . . , gn (m, p) ] = ψ(m, p) (31)

This is called the indirect utility function and specifies utility as a function of prices and income. We can
also write it as follows

ψ (m, p) = max
x

[v(x) : px = m] (32)

The indirect utility function for the Cobb-Douglas utility function is given by

u = xα1
1 xα2

2

=
[
m

p1

(
α1

α1 + α2

)]α1
[
m

p2

(
α2

α1 + α2

)]α2

=
(

α1

α1 + α2

)α1
(

α2

α1 + α2

)α2
(
m

p1

)α1
(
m

p2

)α2

(33)

For the Cobb-Douglas utility function with multiple inputs, the indirect utility function is given by
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ψ = v (x (p, m) ) =
n∏
i=1

xαi

i

=
n∏
i=1

[
αi

Σnj=1 αj

m

pi

] αi

=
n∏
i=1

[
m

Σnj=1 αj

] αi [
αi
pi

] αi

=

[
m

Σnj=1 αj

] Σn
k=1 αk n∏

i=1

[
αi
pi

] αi

(34)

For the dual problem the indirect objective function is

m = Σnj=1 pj hju, p ) = c(u, p) (35)
This is called the cost (expenditure) function and specifies cost or expenditure as a function of prices and

utility. We can also write it as follows

c(u, p) = min
x

[p x : v(x) = u] (36)

3.4. Inversion of ψ(m, p) and c(u, p). Because c(u, p) = m, we can rearrange or invert it to obtain u as
a function of m and p. This will give ψ(m, p). Similarly inversion of ψ(m ,p) will give c(u, p). These
relationships between the utility maximization cost minimization problems are summarized in figure 1

FIGURE 1. Utility Maximization and Cost Minimization

3.5. Properties of the cost function. The cost function in the consumer problem has a number of analogous
to its properties in the production problem.
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3.5.1. C.1. The cost function is nondecreasing in p, increasing in u, and increasing in at least one p.

Let p1 ≥ p2. Let x1 be the cost minimizing input bundle with p1 and x2 be the cost minimizing input
bundle with p2. Then p2x2 ≤ p2x1 because x1 is not cost minimizing with prices p2. Now p1x1 ≥ p2x1

because p1 ≥ p2 by assumption so that

C(p1, y) = p1 x1 ≥ p2 x1 ≥ p2 x2 = C(p2, y)

Nonsatiation guarantees that the function will be increasing in u. Let V(u0) be the set of all bundles that
are equivalent to or preferred to bundles that provide utility level u0. Now let u1 ¿ u2. Because V(u1) is a
subset of V(u2) if u1 ≥ u2 then

C(u1, p) = min
x

{px : x ∈ V (u1)} ≥ min
x

{px : x ∈ V (u2)} = c(u2, p)

The point is that if we have a smaller set of possible x’s to choose from then cost must increase.

3.5.2. C.2. Positively linearly homogenous in p

C(u, θp) = λ C(u, p), p > 0.

Let the cost minimization problem with prices p be given by

C(u, p) = min
x

{px : xεV (u)}, u ∈ DomV, p > 0, (37)

where

DomV = {u ∈ R1
+ : V (u) 	= ∅}

The x vector that solves this problem will be a function of u and p, and is usually denoted h(u,p). This is
the is Hicksian demand function. The cost function is then given by

C(u, p) = p h(u, p) (38)

Now consider the problem with prices tp (p >0)

Ĉ(y, tp) = min
x

{tpx : x ∈ V (u)}, u ∈ DomV, p > 0

= t min
x

{px : x ∈ V (y)}, y ∈ DomV, p > 0
(39)

The x vector that solves this problem will be the same as the vector which solves the problem in equation
37, i.e., h(u,p). The cost function for the revised problem is then given by

Ĉ(p, tp) = tp h(u, p) = tC(u, p) (40)
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3.5.3. C.3. C is concave and continuous in w

To demonstrate concavity let (p, x) and (p’, x’) be two cost-minimizing price-consumption combinations
and let p”= tp + (1-t)p’ for any 0 ≤ t ≤ 1. Concavity implies that C(u, p”) ≥ tC(u, p) + (1-t) C(u, p’). We can
prove this as follows.

We have that C(u, p”) = p”· x”= tp · x”+ (1-t)p’ · x” where x” is the optimal choice of x at prices p” Because
x” is not necessarily the cheapest way to obtain utility level u at prices p’ or p,we have p · x”≥ C(u, pw)
and p’· x” ≥ C(u, p’) so that by substitution C(u, p”) ≥ tC(u, p) + (1-t) C(u, p’). The point is that if p · x” and
p’· x” are each larger than the corresponding term is the linear combination then C(u, p”) is larger than the
linear combination.

Rockafellar [11, p. 82] shows that a concave function defined on an open set (p > 0) is continuous.

3.6. Shephard’s Lemma.

3.6.1. Definition. If indifference curves are convex, the cost minimizing point is unique. Then we have

∂C(u, p)
∂pi

= hi (u, p) (41)

which is a Hicksian Demand Curve

3.6.2. Constructive proof using the envelope theorem. The cost minimization problem is given by

C(y, w) = min
x

px : v(x) − u = 0 (42)

The associated Lagrangian is given by

L = px− λ(v(x) − u) (43)
The first order conditions are as follows

∂L

∂xi
= pi − λ

∂v

∂xi
= 0, i = 1, . . . , n (44a)

∂L

∂λ
= − (vx − u) = 0 (44b)

Solving for the optimal x’s yields

xi(u, p) = hi(u, p) (45)
with C(u,p) given by

C(u, p) = px(u, p) = ph(u, p) (46)
If we now differentiate 46 with respect to p i we obtain

∂C

∂pi
= Σnj=1 pj

∂xj(u, p)
∂pi

+ xi (u, p) (47)

From the first order conditions in equation 44a (assuming that the constraint is satisfied as an equality)
we have

pj = λ
∂v

∂xj
(48)
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Substitute the expression for pj from equation 48 into equation 47 to obtain

∂C

∂pi
= Σnj=1 λ

∂v(x)
∂xj

∂xj (u, p)
∂pi

+ xi (u, p) (49)

If λ > 0 then equation 44b implies[v(x)-u] = 0. Now differentiate equation 44b with respect to p i to obtain

Σnj=1

∂v(x(u, p))
∂xj

∂xj (u, p)
∂pi

= 0 (50)

which implies that the first term in equation 49 is equal to zero and that

∂C(u, p)
∂pi

= xi (u, p) (51)

3.7. The cost function and Marshallian demand functions. If we substitute the indirect utility function in
the Hicksian demand functions obtained via Shephard’s lemma in equation 41, we get x in terms of m and
p. Specifically

xi = xi(u, p) = hi(u, p) = hi[ψ(m, p), p] = gi(m, p) = xi(m, p) (52)

3.8. Cobb-Douglas Example. The utility function is given by

v(x1, x2, . . . , xn) =
n∏
i=1

xαi

i = xα1
1 xα2

2 xα3
3 · · · (53)

First set up the Lagrangian problem

L = Σni=1 pi xi − λ (
n∏
i=1

xαi

i − u ) (54)

The first order conditions are as follows

∂L

∂xi
= pi − λ

[
αi x

α1
1 xα2

2 · · · xαi− 1
i− 1 xαi − 1

i x
αi+ 1
i+1 · · · ] = 0, i = 1, . . . , n (55a)

= pi − αi v

xi
λ = 0, i = 1, . . . , n (55b)

∂L

∂λ
= −

n∏
i=1

xαi + u = 0 (55c)

(55d)

Taking the ratio of the ith and jth equations we obtain

pi
pj

=
αi xj
αj xi

(56)

We can now solve the equation for the jth quantity as a function of the ith quantity and the ith and jth
prices. Doing so we obtain

xj =
αj xi pi
αi pj

=
αj x1 p1

α1 pj

(57)
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where we treat the first good asymmetrically and solve for each demand for a good as a function of the
first. Now substituting in the utility function we obtain

v =
n∏
j=1

x
αj

j

=
n∏
j=1

(
αj x1 p1

α1 pj

)αj
(58)

Because x1, p1 and α1 do not change with j, they can be factored out of the product to obtain

u =
(
x1 p1

α1

)Σn
j=1 αj n∏

j=1

(
αj
pj

)αj

(59)

We then solve this expression for x1 as a function of u and the other x’s. To do so we divide both sides
by the product term to obtain

x
Σn

j=1 αj

1

(
p1

α1

)Σn
j=1 αj

=
u∏n

j=1

(
αj

pj

)αj
(60)

We now multiply both sides by
(
α1
p1

)Σn
j=1 αj

to obtain

x
Σn

j=1 αj

1 =

(
α1
p1

)Σn
j=1 αj

u∏n
j=1

(
αj

pj

)αj
(61)

If we now raise both sides to the power 1
Σn

j=1 αj
we find the value of x1

x1 =
(
α1

p1

) ⎛⎝ u∏n
j=1

(
αj

pj

)αj

⎞
⎠

1
Σn

j=1 αj

(62)

Similarly for the other xk so that we have

xk =
(
αk
pk

) ⎛⎝ u∏n
j=1

(
αj

pj

)αj

⎞
⎠

1
Σn

j=1 αj

(63)

Now if we substitute for the ith x in the cost expression we obtain
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C = Σni=1 pi

(
αi
pi

) ⎛⎝ u∏n
j=1

(
αj

pj

)αj

⎞
⎠

1
Σn

j=1αj

= (Σni=1 α i )

⎛
⎝ u∏n

j=1

(
αj

pj

)αj

⎞
⎠

1
Σn

j=1αj

= (Σni=1 α i ) u
1

Σn
j=1 αj

⎛
⎝ n∏
j=1

(
pj
αj

)αj

⎞
⎠

1
Σn

j=1αj

(64)

3.9. The indirect utility function and Hicksian demands. If we substitute C(u,p) in the Marshallian de-
mands, we get the Hicksian demand functions

xi = xi(m, p) = gi(m, p) = gi[C(u, p), p] = hi(u, p) = xi(u, p) (65)

3.10. Roy’s identity. We can also rewrite Shephard’s lemma in a different way. First write the identity

ψ (C(u, p), p] = u (66)

Then totally differentiate both sides of equation 66with respect to p i holding u constant as follows

∂ ψ[C(u, p), p]
∂m

∂ C(u, p)
∂ pi

+
∂ ψ[C(u, p), p]

∂ pi
= 0 (67)

Rearranging we obtain

∂ C(u, p)
∂ pi

=
− ∂ ψ [C(u,p),p]

∂ pi

∂ ψ [C(u,p),p ]
∂ m

= gi(m, p) (68)

where the last equality follows because we are evaluating the indirect utility function at income level m.
Figure 2 makes these relationships clear.

4. PROPERTIES OF INDIRECT UTILITY FUNCTION

The indirect utility function has the following properties.

4.1. ψ.1. ψ(m,p) is nonincreasing in p, that is if p’ ≥ p, ψ(m,p’) ≤ ψ(m,p).

4.2. ψ.2. ψ(m,p) is nondecreasing in m, that is if m’ ≥ m, ψ(m’,p) ≥ ψ(m,p).

4.3. ψ.3. ψ(m,p) is homogeneous of degree 0 in (p, m) so that ψ(tm,tp) = ψ(m,p) for t > 0.

4.4. ψ.4. ψ(m,p) is quasiconvex in p; that is {p: ψ(m,p) < α } is a convex set for all α.

4.5. ψ.5. ψ(m,p) is continuous for all p > 0, m > 0.
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FIGURE 2. Demand, Cost and Indirect Utility Functions

5. DISCUSSION AND PROOFS OF PROPERTIES OF INDIRECT UTILITY FUNCTION

5.1. ψ.1. ψ(m,p) is nonincreasing in p, that is if p’ ≥ p, ψ(m,p’) ≤ ψ(m,p).

If prices go up, indirect utility cannot increase. Let B = {x: px<m} and B’ = {x: p’x<m} for p’> p. Then
B’ is contained in B. Therefore the maximum of v(x) over B is at least as great as the maximum of v(x) over
B’

5.2. ψ.2. ψ(m,p) is nondecreasing in m, that is if m’ ≥ m, ψ(m’,p) ≥ ψ(m,p).

If income goes up, indirect utility cannot decrease. Let B = {x: px <m} and B’ = {x: px <m’} for m’ > m.
Then B is contained in B’. Therefore the maximum of v(x) over B’ is at least as great as the maximum of v(x)
over B.

5.3. ψ.3. ψ(m,p) is homogeneous of degree 0 in (p, m) so that ψ(tm,tp) = ψ(m,p) for t > 0.

This is called the absence of money illusion. If prices and income are multiplied by the same positive
number, the budget set does not change. Specifically,

n∑
i=1

(tpi)xi = tm

⇒
n∑
i=1

pi xi =m

With the same budget set, the utility maximization problem has the same solution.

5.4. ψ.4. ψ(m,p) is quasiconvex in p; that is {p: ψ(m,p) < α } is a convex set for all α.

Suppose p and p’ are such that ψ(m,p) ≤ α, ψ(m,p’) ≤ α. Let p” = tp + (1-t)t’. We want to show that
ψ(m,p”) ≤ α. Define the budget sets:
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B = {x : px < m}
B′ = {x : p′x < m}
B′′ = {x : p′x < m}

We can show that any x in B’ must be in either B or B’; that is that B ∪ B’ ⊃ B”. Assume not; then x is such
that tpx + (1-t)p’x |leq m, but Px > m and p’x >m. These two inequalities can be written as

tpx > tm

(1 − t)p′x > (1 − t)m
(69)

Summing the two expressions in equation 69 we obtain

tpx + (1 − t)p′x > m

But this contradicts the original assumption that x is in neither B or B’.

Now note that

ψ(m, p′′) = max
x

v(x), such that x ∈ B′′

≤ max
x

v(x), such that x ∈ (B ∪B′); because B ∪B′ ⊃ B′′

≤ α because ψ(m, p) ≤ α and ψ(m, p′) ≤ α

5.5. ψ.5. ψ(m,p) is continuous for all p > 0, m > 0.

By the theorem of the maximum (given below) ψ(m,p) is continuous for p > 0, m > 0. In the utility
maximization problem, f(x,λ) in the theorem of the maximum is the utility function. It does not depend on
λ. The constraint set is those values of x that are in the budget set as parameterized by p and m. So λ in
this case is (p,m). The indirect utility function ψ(m,p) is M(λ) while the ordinary demand functions x(m,p)
are m(λ). The utility function is continuous by assumption. The constraint set is closed. If p > 0 and m > 0,
the constraint set will be bounded. If some price were zero, the consumer might want to consume infinite
amounts of this good. We rule that out.

Theorem 1 (Theorem of the Maximum). Let f(x,λ) be a continuous function with a compact range and suppose
that the constraint set γ(λ)is a non-empty, compact-valued, continuous correspondence of λ. Then

(i) The function M(λ) = maxx {f(x, λ) : x ∈ γ(λ) } is continuous
(ii) The correspondence m(λ) = {x ∈ γ(λ) : f(x, λ) = M(λ)} is nonempty, compact valued and upper

semi-continuous.
Proof: See Berge [1, p. 116].

6. MONEY METRIC UTILITY FUNCTIONS

6.1. Definition of m(p,x). Assume that the consumption set X is closed, convex, and bounded from below.
The common assumption that the consumption set is X = RL

+ = {x ∈ RL: x� ≥ 0 for � = 1, ... , L} is more than
sufficient for this purpose. Assume that the preference ordering satisfies the properties given in section 1.8.
Then for all x ∈ X, let BT(x) = {y∈BT | y� x}. For the price vector p, the money metric m(p,x) is defined by

m(p, x) = min
y≥ 0

py

s.t. y ∈ BT (x)
(70)
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If p is strictly greater than zero and if x is a unique element of the least cost commodity bundles at prices
p, then m(p,x) can be viewed as a utility function for a fixed set of prices. It can also be defined as follows.

m(p, x) = C(u(x), p) (71)
The money metric defines the minimum cost of buying bundles as least as good as x. Consider figure 3

FIGURE 3. Utility Maximization and Cost Minimization

xi

xj

z

x

m��p, x�
��������������������

p2

All points on the indifference curve passing through x will be assigned the same level of m(p,x), and all
points on higher indifference curves will be assigned a higher level.

6.2. Example of a money metric utility function. Consider the Cobb-Douglas utility function

v(x1, x2, . . . , xn) = A

n∏
i=1

xαi

i = A xα1
1 xα2

2 xα3
3 · · · (72)

The cost function associated with this utility function is given in equation 64, which we repeat here.
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C = (Σni=1 αi )

⎛
⎝ v

A
∏n
j=1

(
αj

pj

)αj

⎞
⎠

1
Σn

j=1αj

= (Σni=1 αi ) v
1

Σn
j=1 αj

⎛
⎝ n∏
j=1

(
pj
αj

)αj

⎞
⎠

1
Σn

j=1αj

(73)

To obtain the money metric we replace v in equation 73 with v(x) from equation 72.

C = (Σni=1 αi ) v
1

Σn
j=1 αj

⎛
⎝ n∏

j=1

(
pj
αj

)αj

⎞
⎠

1
Σn

j=1αj

⇒ m(p, x) = (Σni=1 αi )

(
A

n∏
i=1

xαi

i

) 1
Σn

j=1 αj

⎛
⎝ n∏
j=1

(
pj
αj

)αj

⎞
⎠

1
Σn

j=1αj

= (Σni=1 αi )

(
A

n∏
i=1

(
xi pi
αi

)αi
) 1

Σn
j=1 αj

(74)

7. MONEY METRIC INDIRECT UTILITY FUNCTIONS

7.1. Definition of μ(p,p0,m). For the price vectors p and p0 and income m, the money metric indirect utility
function is defined by

μ(p, p0, m) = c(ψ(p0, m), p) (75)
The indirect money metric utilty function defines the minimum cost of buying bundles at prices p that

yield uility at least as large as than obtained when prices are p0 and income is m. The money metric indirect
utility function is sometimes called the indirect compensation function.

7.2. Example of an indirect money metric utility function. Consider the Cobb-Douglas utility function
from equation 72

v(x1, x2, . . . , xn) =
n∏
i=1

xαi

i = xα1
1 xα2

2 xα3
3 · · ·

The cost function associated with this utility function is given in equation 64, which we repeat here.

C = (Σni=1 αi ) v
1

Σn
j=1 αj

⎛
⎝ n∏
j=1

(
pj
αj

)αj

⎞
⎠

1
Σn

j=1αj

(76)

To obtain the money metric we replace v in equation 76 with ψ(p,m) from equation 34 which we also
repeat here.

ψ(p, m) =

[
m

Σnj=1 αj

] Σn
k=1 αk n∏

i=1

[
αi
pi

] αi

(77)

Making the substitution we obtain
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C = (Σni=1 αi ) v
1

Σn
j=1 αj

⎛
⎝ n∏
j=1

(
pj
αj

)αj

⎞
⎠

1
Σn

j=1αj

⇒ m(p, x) = (Σni=1 αi )

⎛
⎝[ m

Σnj=1 αj

]Σn
k=1 αk n∏

i=1

[
αi
p0
i

] αi

⎞
⎠

1
Σn

j=1 αj

⎛
⎝ n∏
j=1

(
pj
αj

)αj

⎞
⎠

1
Σn

j=1αj

=
(
Σnj=1 αj

) [ m

Σnj=1 αj

]
n∏
j=1

( [
αj
p0
j

] αj
) 1

Σn
j=1 αj

⎛
⎝ n∏

j=1

(
pj
αj

)αj

⎞
⎠

1
Σn

j=1αj

= m
n∏
j=1

( [
αj
αj

]αj
) 1

Σn
j=1 αj

⎛
⎝ n∏
j=1

(
pj
p0
j

)αj
⎞
⎠

1
Σn

j=1αj

= m

⎛
⎝ n∏
j=1

(
pj
p0
j

)αj
⎞
⎠

1
Σn

j=1αj

(78)

8. PROPERTIES OF DEMAND FUNCTIONS

Demand functions have the following properties

8.1. Adding up or Walras law.

n∑
i=1

pih(u, p) =
n∑
i=1

pi gi(m, p) = m (79)

8.2. Homogeneity.
hi (u, θ p ) = hi (u, p ) = gi (θ m, θ p ) = gi (m, p) (80)

The Hicksian demands are derivatives of a function that is homogeneous of degree one, so they are
homogeneous of degree zero. Euler’s theorem then implies that

n∑
j=1

∂ hj (u, p)
∂ pj

pj = 0 (81)

If all prices and income are multiplied by a constant t > 0, the budget set does not change and so the
optimal levels of x(m,p) do not change. We can also write this in differential form using the Euler equation.

n∑
j=1

∂ gj(m, p)
∂ pj

pj +
∂ gj(m, p)

∂ m
m = 0

⇒
n∑
j=1

∂ gj(m, p)
∂ pj

pj =
−∂ gj(m, p)

∂ m
m

(82)
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8.3. Symmetry. The cross price derivatives of the Hicksian demands are symmetric, that is, for all i 	= j

∂ hj(u, p)
∂ pi

=
∂ hi(u, p)

∂ pj
(83)

This is clear from the definition of the Hicksian demands as derivatives of the cost function. Specifically,

∂C(u, p)
∂pi

= hi(u, p) (84)

so that

∂2 C(u, p)
∂ pj ∂ pi

=
∂ hi(u, p)
∂ pj

and
∂2 C(u, p)
∂ pi ∂ pj

=
∂ hj(u, p)
∂ pi

(85)

by Young’s theorem on the equality of cross-partials.

8.4. Negativity. The nxn matrix formed by the elements ∂ hi(u,p)
∂ pj

is negative semi-definite, that is, for any
vector z, the quadratic form

n∑
i=1

n∑
j=1

zi zj
∂ hi(u, p )
∂ pj

≤ 0 (86)

If the vector z is proportional to p, then the inequality becomes an equality and the quadratic form is
zero. This means the matrix is negative semi-definite. This follows from the concavity of the cost function.
If we denote ∂ hi(u,p )

∂ pj
by sij , then we can write the entire matrix of cross partial derivatives as S = sij . This

then implies that

z′Sz ≤ 0 (87)
By the properties of a negative semi-definite matrix, this means that s ii ≤ 0, or that the Hicksian demand

functions have a slope which is non-positive. This follows from concavity of cost, and does not require
convex indifference curves.

8.5. The Slutsky equation. If we differentiate equation 65 with respect to pj and then substitute from
Shephard’s lemma for ∂ C(u,p)

∂ pj
,, we obtain

xi = xi(m, p) = gi[C(u, p), p] = hi(u, p) = xi(u, p)

⇒ xi(u, p) = hi(u, p) = gi[C(u, p), p]

⇒ ∂ xi(u, p)
∂ pj

= sij =
∂ hi(u, p)
∂ pj

=
∂ gi(m, p)
∂ m

∂ C(u, p)
∂ pj

+
∂ gi(m, p)
∂ pj

=
∂ gi(m, p)
∂ m

xj +
∂ gi(m, p)
∂ pj

=
∂ xi(m, p)

∂ m
xj +

∂ xi(m, p)
∂ pj

(88)

The last term in equation 88 is the uncompensated derivative of xi with respect to pj . To compensate for
this, an amount, xi, times ∂ gi

∂ m
must be added on. We can also write equation 88 as follows

∂ xi(m, p)
∂ pj

=
∂ xi(u, p)
∂ pj

− ∂ xi(m, p)
∂ m

xj(m, p) (89)
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The first term is called the substitution effect, the second term the income effect. Notice that∣∣∣∣∂ hi(u, p)∂ pi

∣∣∣∣ >
∣∣∣∣∂ xi(m, p)∂ pi

∣∣∣∣ (90)

when the ith good is normal.

9. INTEGRABILITY

In section 8 we determined that a system of demand equations satisfies
(i) Walras Law

(ii) Homogeneity of degree zero in prices and income
(iii) Symmetry
(iv) Negativity

The integrability question has to do with whether a system of equations satisfy these four properties
whether there exists a utility function from which this system can be derived. The answer to this question
is yes as indicated in the following theorem.

Theorem 2. A continuously differentiable function x which maps Rn
+ into the real line is the demand function gen-

erated by some increasing, quasiconcave utility function if (and only if, when utility continuous, strictly increasing,
and strictly quasiconcave) it satisfies Walras law, symmetry and negativity.

This question is typically posed in terms of the cost function. One shows that a system of Hicksian
demand functions satisfying Walras law, symmetry and negativity has an associated cost function from
which it can be derived. Once one has the cost function, it can be used to obtain the utility function.
Shephard’s lemma (equation 41) states that

∂C(u, p)
∂pi

= hi(u, p) (91)

Ordinary (Marshallian demand equations can be written in terms of Hicksian demand equations (see
equation 65) as follows

xi(m, p) = xi(C(u, p), p) = hi(u, p) = xi(u, p) (92)

Combining equations 91 and 92 we can then write

∂C(u, p)
∂pi

= hi(u, p) = xi(u, p) = xi(C(u, p), p), i = 1, 2, . . . , k (93)

Now suppose we have a system of demand functions x i(m, p) for i = 1, 2, . . . , k. Now pick some point
x0(m,p0) and assign it an arbitrary level of utility u0. Also assume that

C(u0, p0) = p0x(m0, p0) (94)

If a cost function which generated this system of demand functions exists, then it must satisfy the system
of partial differential equations given by

∂C(u0, p)
∂pi

= hi(u0, p) = xi(C(u0, p), p), i = 1, 2, . . . , k (95)

If this system of partial differential equations has a solution, then x(m,p) is the demand system generated
the cost function C(u, p). In order to understand the conditions for such a system to have a solution,
consider the derivative of equation 95 with respect to pj .
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∂2C(u0, p)
∂pj ∂pi

=
∂ xi(C(u0, p), p)

∂ C

∂ C(u0, p)
∂ pj

+
∂ xi(C(u0, p), p)

∂ pj
(96)

Substituting for ∂ C(u0,p)
∂ pj

using Shephard’s lemma and writing m in place of C we obtain

∂2C(u0, p)
∂pj ∂pi

=
∂ xi(m, p)

∂ m
xj(m, p) +

∂ xi(m, p)
∂ pj

(97)

Notice that the left hand side of equation 97 is symmetric in i and j by Young’s theorem. But if the left
hand side of 97 is symmetric the right hand side of 97 must also be symmetric. This implies that the right
hand side of 97 being symmetric is a necessary condition for the system of partial differential equations in
95 to have a solution. Frobenius’ theorem states that symmetry of the right hand side of 97 is also sufficient
for 95 to have a solution. Then notice that the right hand side of 97 is the Slutsky matrix associated with the
demand system x(m,p). So symmetry of the Slutsky matrix is necessary and sufficient for a function C(u, p)
to exist, from which x(p,m) can be derived. The question remaining is whether the function C(u,p) which
solves 95 is a proper cost function.

We therfore need to verify that the properties of the cost function stated in subsection 3.5 hold for the
function which solves the system in equation 95. These properties are

1. Nondecreasing in p, increasing in u, and increasing in at least one p.
2. Positively linearly homogenous in p
3. Concave and continuous in w

C(u, p) as a solution to 95 will be nondecreasing in p because Shephard’s lemma shows that the derivative
of C(u, p) with respect to any price is Hicksian demand which in nonnegative. The other properties in items
1 and 3 can be similarly shown. C(u,p) will be concave if it has a Hessian matrix which is negative semi-
definite. But the Hessian of C(u,p) is just the Slutsky matrix. So if a system of demand equations has a
negative semi-definite Slutsky matrix, then the solution to the system partial differential equations in 95
will be concave.

A continuously differentiable function x which maps Rn+ into the real line is the demand function The
bottom line is that a system of demand functions that satisfies Walras law, symmetry and negativity is
consistent with some increasing, quasiconcave utility function.
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10. SOME NOTES ON FUNCTIONS, CORRESPONDENCES, AND FUNCTIONAL STRUCTURE

10.1. Functions. By a function we mean a rule that assigns to each element in a set X, a unique element
{f(x)} in another set Y. Consider the set X = R1 and Y = R1 and the rule f(x) = 3x. For any real x, the function
assigns a unique real number in the set Y. We often use the following notation for a function

f : X → Y

The set X is called the domain of the function f. The set of values taken by f, that is, the set y ∈ Y: (∃x)
[y = f(x)] is called the range of f. The range of f will generally be smaller than Y. Consider the case where X
is the rational numbers and Y is the real numbers. The function f(x) = 3x will not cover all members of Y. A
function whose range is all of Y is said to be onto Y. If A is a subset of X, the image under f of A is defined
to be the set of elements in Y such that y = f(x) for some x in A. This is denoted as f[A] and formally given
by

f [A] = {y ∈ Y : (∃x) [x ∈ A and y = f (x)]}
The function f is onto Y iff Y = f[X]. If B is a subset of Y, the inverse image f−1[B] is the set of x in X for

which f(x) is in B. Formally

f−1 [B] = {x ∈ X : f (x) ∈ B}
The function f is onto Y iff the inverse image of each nonempty set of Y is nonempty. Consider again

the example where X is the rational numbers. There are elements of Y such that the is no element of X
that could generate them under the function f(x) = 3x. A function f: X → Y is called one-to-one if f(x1) =
f(x2) only when x1 = x2. Consider the function mapping the real line into the real line where f(x) = x2. The
function is not one-to-one since f(-3) = f(3). The function is also not onto since there is no real x for which
f(x) = -25.

10.2. Correspondences. Let X and Y be two sets. If with each element of X we associate a subset Γ(X) of Y,
we say that the correspondence x → Γ(X) is a mapping of X into Y. The set Γ(x) is called the image of x under
the mapping Γ. If the set Γ(x) always consists of a single element, we say that Γ is a function. Consider as
an example the case where X isR1

+ and Y is R1 Now consider the mapping Γ(x) = y ∈ R1: y ≤ -
√

x. This is a
correspondence from X to Y.

10.3. Functional Structure. Functional structure has to do with the amount of information we have about
a given mapping. Considered in a different fashion, it is about the number of constraints that we know are
imposed on a mapping. For example it we know that y = 3x for all elements x ε X, then we know everything
there is to know about the mapping. Alternatively, the mapping is very constrained in that no other rule
satisfies this mapping. Consider the case where y = ax, but a is not known. In this case we know that the
mapping is linear, but we cannot say much more than that about it. Consider a function which maps R 2

into R1. Specifically consider the function y = a x2
1 + b x2

2 .We know that the function is quadratic and that
it has no linear or constant terms. It is also clear that it is homogeneous of degree 2 in the vector x because
f(3x) = 9f(x). Thus the function is not completely general.

Functional structure relates to the way in which a mapping is constructed and the way in which the
elements of the domain enter the mapping. Consider for example a general mapping from R3 to R1 that
has the following form: y = f(x1, x2, x3) = g(x1, x2) + h(x3). While this is not much information about the
mapping, it rules out functions such as y = 3x1x2 + 5x1x3 + 8x2x3 .

Functional structure is typically represented in two ways. The earliest and perhaps most common is
through the use of differential constraints on the function. These constraints then imply something about



24 CONSUMER CHOICE

the parent function. The difficulty with this approach is that it requires differentiability. The other approach
is to consider structure on the function directly as for example f(x) = F(h(x)) where h is required to be
homogeneous in all the x’s.

10.4. Functional Structure and Functional Equations. Functional structure is often related to the solution
of functional equations. Functional equations are equations in which the unknown (or unknowns) are
functions. Such functions can be multi-place in the sense of having more than one argument and can also
deal with several variables. The number of places in the equations need not equal the number of variables.
For example, the famous Cauchy equation f(x+y) = f(x) + f(y) is a function with one place but two variables.
A linear function such as f(z) = cz would satisfy the equation. As another example consider the cost function
for a multiple output firm. Consider the restriction that the cost of producing the vector of outputs (x+y)
is the sum of the cost of producing either vector individually, i.e., C(w,x+y) = C(w, x) + C(w, y). The
determination of the form that all cost functions satisfying this restriction must take involves solving the
functional equation.
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11. AGGREGATION ACROSS GOODS

11.1. Separability and Aggregation. Separability is related to the ability to aggregate variables in economic
analysis. For example, is it reasonable to aggregate two or more types of cold cereal together in analyzing
the demand for food. Or can the hours of male and female workers be added together for an analysis of
productivity. Separability is specifically concerned with how the rate of substitution between two goods
or factors is affected by levels of other goods or factors. For example the rate of substitution between beef
and pork may or may not be affected by the amount of tofu consumed. If this rate is not affected by tofu
consumption, then some types of aggregation of beef and pork may be possible. While beef and pork may
not be separable from tofu in consumption, they may be separable from shirts. Separability is particularly
important for aggregate analysis where inputs tend to come in generic bundles such as labor, capital and
materials, and goods tend to come in bundles such as housing, food, transportation, entertainment and so
on.

11.2. Differential definition of separability. Consider a function f depending on n variables with f being
is twice differentiable and

∂f

∂xi
> 0 (98)

Then variables xi and xj are separable from xk if and only if

∂

(
∂f(x)
∂xi

∂f(x)
∂xj

)
∂xk

= 0 ∀x ∈ Ωn

Ωn = { (x1 , x2, . . . , xn) = x εRn | x ≥ 0n and x 	= 0n}
(99)

This says that the marginal rate of substitution between x i and xj does not depend on the level of xk .
This definition is due to Leontief [8] and independently Sono [10].

11.3. Intuition of differential definition of separability. As xk changes, the indifference curve when pro-
jected into xi, xj space will have the same slope at

(x̄i, x̄j)

In figure 4, changing x3 to x̂3 does not change the set of x1 and x2 such that u(x1, x2, x3) ≥ u(x̄1, x̄2, x3).
In figure 5, changing x3 to x̂3 changes the set of x1 and x2 such that u(x1, x2, x3) ≥ u(x̄1, x̄2, x3).
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FIGURE 4. Separability


