
GENERAL ANALYSIS OF MAXIMA/MINIMA IN CONSTRAINED
OPTIMIZATION PROBLEMS

1. STATEMENT OF THE PROBLEM

Consider the problem defined by

maximize
x

f(x)

subject to g(x) = 0

where g(x) = 0 denotes an m× 1 vector of constraints, m < n. We can also write this as

max
x1, x2,...xn

f(x1, x2, . . . , xn)

subject to
g1(x1, x2, . . . , xn) = 0

g2(x1, x2, . . . , xn ) = 0
...

gm(x1, x2, . . . , xn ) = 0

(1)

The solution can be obtained using the Lagrangian function

L(x; λ) = f(x)− λ′g(x) where λ′ = (λ1, λ2, . . . , λm)

= f(x1, x2, . . .)− λ1g1(x) − λ2g2(x)− · · · − λmgm(x)
(2)

Notice that the gradient of L will involve a set of derivatives, i.e.

∇xL = ∇xf(x)−
(
∂g

∂x

)
λ

where

(
∂g

∂x

)
= Jg =




∂g1(x∗)
∂x1

∂g2(x∗)
∂x1

. . .
∂gm(x∗)
∂x1

∂g1(x∗)
∂x2

∂g2(x∗)
∂x2

. . .
∂gm(x∗)
∂x2

...
...

...
...

∂g1(x∗)
∂xn

∂g2(x∗)
∂xn

. . .
∂gm(x∗)
∂xn




(3)
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There will be one equation for each x. There will also be equations involving the deriva-
tives of L with respect to each λ.

2. NECESSARY CONDITIONS FOR AN EXTREME POINT

The necessary conditions for an extremum of f with the equality constraints g(x) = 0
are that

∇L(x∗, λ∗) = 0 (4)

where it is implicit that the gradient in (3) is with respect to both x and λ.

3. SUFFICIENT CONDITIONS FOR AN EXTREME POINT

3.1. Statement of Conditions. Let f, g1, . . . , gm be twice continuously differentiable real-
valued functions on Rn. If there exist vectors x∗ ε Rn, λ∗ ε Rm such that

∇L(x∗, λ∗) = 0 (5)

and for every non-zero vector z εRn satisfying

z′∇gi(x∗) = 0, i = 1, . . . , m (6)

it follows that

z′∇2
xL(x∗, λ∗)z > 0, (7)

then f has a strict local minimum at x∗, subject to gi(x) = 0, i = 1, . . . , m. If the inequal-
ity in (7) is reversed, then f has strict local maximum at x∗. The idea is that if equation 5
holds, then if equation 7 holds for all vectors satisfying equation 6, f will have a strict local
minimum at x∗.

3.2. Checking the Sufficient Conditions. These conditions for a maximum or minimum
can be stated in terms of the Hessian of the Lagrangian function (or bordered Hessian).
Let f, g1, . . . , gm be twice continuously differentiable real valued functions. If there exist
vectors x∗ ε Rn, λ∗ ε Rm, such that

∇L(x∗, λ∗) = 0 (8)

and if
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(−1)m det




∂2L(x∗, λ∗)
∂x1∂x1

. . .
∂2L(x∗, λ∗)
∂x1∂xp

∂g1(x∗)
∂x1

. . .
∂gm(x∗)
∂x1

· · · · · ·
· · · · · ·
· · · · · ·

∂2L(x∗, λ∗)
∂xp∂x1

. . .
∂2L(x∗, λ∗)
∂xp∂xp

∂g1(x∗)
∂xp

. . . d
∂gm(x∗)
∂xp

∂g1(x∗)
∂x1

. . .
∂g1(x∗)
∂xp

0 . . . 0

· · · · · ·
· · · · · ·
· · · · · ·

∂gm(x∗)
∂x1

. . .
∂gm(x∗)
∂xp

0 . . . 0




> 0 (9)

for p = m+ 1, . . . , n, then f has a strict local minimum at x∗, such that

gi(x∗) = 0, i = 1, . . . , m. (10)
We check the determinants in (9) starting with the one that has m + 1 elements in each

row and column of the Hessian andm+1 elements in each row or column of the derivative
of a given constraint with respect to x. Note thatmdoes not change as we check the various
determinants so that they will all be of the same sign for a given m.

If there exist vectors x∗ ε Rn, λ∗ ε Rm, such that

∇L(x∗, λ∗) = 0 (11)
and if

(−1)p det




∂2L(x∗, λ∗)
∂x1∂x1

. . .
∂2L(x∗, λ∗)
∂x1∂xp

∂g1(x∗)
∂x1

. . .
∂gm(x∗)
∂x1

· · · · · ·
· · · · · ·
· · · · · ·

∂2L(x∗, λ∗)
∂xp∂x1

. . .
∂2L(x∗, λ∗)
∂xp∂xp

∂g1(x∗)
∂xp

. . .
∂gm(x∗)
∂xp

∂g1(x∗)
∂x1

. . .
∂g1(x∗)
∂xp

0 . . . 0

· · · · · ·
· · · · · ·
· · · · · ·

∂gm(x∗)
∂x1

. . .
∂gm(x∗)
∂xp

0 . . . 0




> 0 (12)
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for p = m+ 1, . . . , n then f has a strict local maximum at x∗, such that

gi(x∗) = 0, i = 1, . . . , m. (13)

We check the determinants in (12) starting with the one that has m + 1 elements in
each row and column of the Hessian and m + 1 elements in each row or column of the
derivative of a given constraint with respect to x. Note that p changes as we check the
various determinants so that they will alternate in sign for a given m.

Consider the case where n = 2 and m = 1. Note that the first matrix we check has
p = m+ 1 = 2. Then the condition for a minimum is

(−1) det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




> 0 (14)

This, of course, implies

det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




< 0 (15)

The condition for a maximum is

(−1)2 det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




> 0 (16)

This, of course, implies
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det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




> 0 (17)

Also consider the case where n = 3 and m = 1. We start with p = m + 1 = 2 and
continue until p = n. Then the condition for a minimum is

(−1) det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




> 0

(−1) det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂2L(x∗, λ∗)
∂x1∂x3

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂2L(x∗, λ∗)
∂x2∂x3

∂g(x∗)
∂x2

∂2L(x∗, λ∗)
∂x3∂x1

∂2L(x∗, λ∗)
∂x3∂x2

∂2L(x∗, λ∗)
∂x3∂x3

∂g(x∗)
∂x3

∂g(x∗)
∂x1

∂g(x∗)
∂x2

∂g(x∗)
∂x3

0




> 0

(18)

The condition for a maximum is
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(−1)2 det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




> 0

(−1)3 det




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂2L(x∗, λ∗)
∂x1∂x3

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂2L(x∗, λ∗)
∂x2∂x3

∂g(x∗)
∂x2

∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂2L(x∗, λ∗)
∂x1∂x3

∂g(x∗)
∂x3

∂g(x∗)
∂x1

∂g(x∗)
∂x2

∂g(x∗)
∂x3

0




> 0

(19)

3.3. Sufficient Condition for a Maximum and Minimum and Positive and Negative Def-
inite Quadratic Forms. Note that at the optimum, equation 6 is just linear in the sense that
the derivatives

∂gi(x∗)
∂xj

are fixed numbers at the point x∗ and we can write equation 6 as

z′Jg = 0

(z1 z2 . . .zn)




∂g1(x∗)
∂x1

∂g2(x∗)
∂x1

. . .
∂gm(x∗)
∂x1

∂g1(x∗)
∂x2

∂g2(x∗)
∂x2

. . .
∂gm(x∗)
∂x2

...
...

...
...

∂g1(x∗)
∂xn

∂g2(x∗)
∂xn

. . .
∂gm(x∗)
∂xn




=




0
0
...
0


 (20)

where Jg is the matrix
{
∂gi(x

∗)
∂xj

}
and where there is a column of the Jg for each constraint

and a row for each x variable we are considering. This then implies that the sufficient con-
dition for a strict local maximum of the function f is that |HB| has the same sign as (−1)p,
that is the last n−m leading principal minors of HB alternate in sign on the constraint set
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denoted by equation 6. This is the same as the condition that the quadratic form z′HBz be
negative definite on the constraint set

z′∇gi(x∗) = 0, i = 1, . . . , m (21)
If |HB| and these last n −m leading principal minors all have the same sign as (−1)m,

then z′HBz is positive definite on the constraint set z′∇gi(x∗) = 0, i = 1, . . . , m and the
function has strict local minimum at the point x∗.

If both of conditions are violated by non-zero leading principal minors, then z′HBz
is indefinite on the constraint set and we cannot determine whether the function has a
maximum or a minimum.

3.4. Example 1: Minimizing Cost Subject to an Output Constraint. Consider a produc-
tion function given by

y = 20x1 − x2
1 + 15x2 − x2

2 (22)
Let the prices of x1 and x2 be 10 and 5 respectively with an output constraint of 55.

Then to minimize the cost of producing 55 units of output given this prices we set up the
following Lagrangian

L = 10x1 + 5x2 − λ(20x1 − x2
1 + 15x2 − x2

2 − 55)

∂L

∂x1
= 10 − λ(20− 2x1) = 0

∂L

∂x2
= 5 − λ(15− 2x2) = 0

∂L

∂λ
= (−1)(20x1 − x2

1 + 15x2 − x2
2 − 55) = 0

(23)

If we take the ratio of the first two first order conditions we obtain

10
5

= 2 =
20 − 2x1

15 − 2x2

⇒ 30− 4x2 = 20− 2x1

⇒ 10− 4x2 = −2x1

⇒ x1 = 2x2 − 5

(24)

Now plug this into the negative of the last first order condition to obtain

20(2x2 − 5)− (2x2 − 5)2 + 15x2 − x2
2 − 55 = 0 (25)

Multiplying out and solving for x2 will give
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40x2 − 100− (4x2
2 − 20x2 + 25) + 15x2 − x2

2 − 55 = 0

⇒ 40x2 − 100− 4x2
2 + 20x2 − 25 + 15x2 − x2

2 − 55 = 0

⇒ −5x2
2 + 75x2 − 180 = 0

⇒ 5x2
2 − 75x2 + 180 = 0

⇒ x2
2 − 15x2 + 36 = 0

(26)

Now solve this quadratic equation for x2 as follows

x2 =
15 ±

√
225− 4(36)
2

=
15 ±

√
81

2
= 12 or 3

(27)

Therefore,

x1 = 2x2 − 5
= 19 or 1

(28)

The Lagrangian multiplier λ can be obtained by solving the first equation that was ob-
tained by differentiating L with respect to x1

10 − λ(20− (19)) = 0

⇒ λ = −5
9

10− λ(20− 2(1)) = 0

⇒ λ =
5
9

(29)

To check for a maximum or minimum we set up the bordered Hessian as in
equations 14–17. The bordered Hessian in this case is

HB =




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




(30)

We only need to compute one determinant. We compute the various elements of the
bordered Hessian as follows
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L = 10x1 + 5x2 − λ(20x1 − x2
1 + 15x2 − x2

2 − 55)

∂L

∂x1
= 10− λ(20− 2x1)

∂L

∂x2
= 5 − λ(15− 2x2)

∂2L

∂x1∂x1
= 2λ

∂2L

∂x1∂x2
= 0

∂2L

∂x2∂x2
= 2λ

∂g

∂x1
= 20− 2x1

∂g

∂x2
= 15− 2x2

(31)

Consider first the point (19, 12, -5/9). The bordered Hessian is given by

HB =




2λ 0 20− 2x1

0 2λ 15− 2x2

20− 2x1 15− 2x2 0




x1 = 19, x2 = 12, λ = −5
9

HB =




−10
9

0 −18

0 −10
9

−9

−18 −9 0




(32)

The determinant of the bordered Hessian is
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|HB| = (−1)2
(
−10

9

) ∣∣∣∣∣∣

−10
9 −9

−9 0

∣∣∣∣∣∣
+ (−1)3(0)

∣∣∣∣∣∣

−10
9 −9

−9 0

∣∣∣∣∣∣
+ (−1)4(−18)

∣∣∣∣∣∣

0 −10
9

−18 −9

∣∣∣∣∣∣

=
(
−10

9

)
(−81) + 0 + (−18)(−20)

= 90 + 360 = 450

(33)

Here p = 2 so the condition for a maximum is that (−1)2|HB| > 0, so this point is a
relative maximum.

Now consider the other point, (1, 3, 5/9). The bordered Hessian is given by

HB =




2λ 0 20 − 2x1

0 2λ 15 − 2x2

20 − 2x1 15 − 2x2 0




x1 = 1, x2 = 3, λ =
5
9

HB =




10
9

0 18

0
10
9

9

18 9 0




(34)

The determinant of the bordered Hessian is

|HB| = (−1)2
(

10
9

) ∣∣∣∣∣∣

10
9 9

9 0

∣∣∣∣∣∣
+ (−1)3(0)|

∣∣∣∣∣∣

10
9 9

9 0

∣∣∣∣∣∣
+ (−1)4(18)

∣∣∣∣∣∣

0 10
9

18 9

∣∣∣∣∣∣

=
(

10
9

)
(−81) + 0 + (18)(−20)

= −90 − 360 = −450

(35)

The condition for a minimum is that (−1)|HB| > 0, so this point is a relative minimum.
The minimum cost is obtained by substituting into the cost expression to obtain

C = 10(1) + 5(3) = 25 (36)
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3.5. Example 2: Maximizing Output Subject to a Cost Constraint. Consider a production
function given by

y = 30x1 + 12x2 − x2
1 + x1x2 − x2

2 (37)

Let the prices of x1 and x2 be 10 and 4 respectively with an cost constraint of $260.
Then to maximize output with a cost of $260 given these prices we set up the following
Lagrangian

L = 30x1 + 12x2 − x2
1 + x1x2 − x2

2 − λ(10x1 + 4x2 − 260)

∂L

∂x1
= 30− 2x1 + x2 − 10λ = 0

∂L

∂x2
= 12 + x1 − 2x2 − 4λ = 0

∂L

∂λ
= −10x1 − 4x2 + 260 = 0

(38)

If we take the ratio of the first two first order conditions we obtain

10
4

= 2.5 =
30− 2x1 + x2

12 + x1 − 2x2

⇒ 30 + 2.5x1 − 5x2 = 30 − 2x1 + x2

⇒ 4.5x1 = 6x2

⇒ x1 = 1.33̄x2

(39)

Now plug this value for x1 into the negative of the last first order condition to obtain

10x1 + 4x2 − 260 = 0

⇒ (10)(1.33̄x2) + 4x2 − 260 = 0

⇒ 13.33̄x2 + 4x2 = 260

⇒ 17.33̄x2 = 260

⇒ x2 = 15

⇒ x1 = 7
(

4
3

)
(15) = 20

(40)

We can also find the maximum y by substituting in for x1 and x2.
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y = 30x1 + 12x2 − x2
1 + x1x2 − x2

2

= (30)(20) + (12)(15)− (20)2 − (20)(15)− (15)2

= 600 + 180− 400 + 300− 225
= 455

(41)

The Lagrangian multiplier λ can be obtained by solving the first equation that was ob-
tained by differentiating L with respect to x1

30− 2x1 + x2 − 10λ = 0

⇒ 30 − 2(20) + (15)− 10λ = 0
⇒ 30− 40 + 15− 10λ = 0

⇒ 5 = 10λ

⇒ λ =
1
2

(42)

To check for a maximum or minimum we set up the bordered Hessian as in equa-
tions 14–17 where p = 2 and m = 1. The bordered Hessian in this case is

HB =




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




(43)

We compute the various elements of the bordered Hessian as follows
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L = 30x1 + 12x2 − x2
1 + x1x2 − x2

2 − λ(10x1 + 4x2 − 260)

∂L

∂x1
= 30− 2x1 + x2 − 10λ

∂L

∂x2
= 12 + x1 − 2x2 − 4λ

∂2L

∂x1∂x1
= −2

∂2L

∂x1∂x2
= 1

∂2L

∂x2∂x2
= −2

∂g

∂x1
= 10

∂g

∂x2
= 4

(44)

The derivatives are all constants. The bordered Hessian is given by

HB =



−2 1 10

1 −2 4

10 4 0


 (45)

The determinant of the bordered Hessian is

|HB| = (−1)2(−2)
∣∣∣∣
−2 4
4 0

∣∣∣∣+ (−1)3(1)
∣∣∣∣
1 4
10 0

∣∣∣∣ + (−1)4(10)|
∣∣∣∣
1 −2
10 4

∣∣∣∣

= (−2)(−16)− (−40) + (10)(24)

= 32 + 40 + 240 = 312

(46)

The condition for a maximum is that (−1)2|HB| > 0, so this point is a relative maximum.

3.6. Example 3: Maximizing Utility Subject to an Income Constraint. Consider a utility
function given by

u = xα1
1 xα2

2

Now maximize this function subject to the constraint that

w1x1 + w2x2 = c0



14 GENERAL ANALYSIS OF MAXIMA/MINIMA IN CONSTRAINED OPTIMIZATION PROBLEMS

Set up the Lagrangian problem:

L = xα1
1 xα2

2 − λ[w1x1 + w2x2 − c0]

The first order conditions are

∂L

∂x1
= α1x

α1−1
1 xα2

2 − λw1 = 0

∂L

∂x2
= α2x

α1
1 xα2−1

2 − λw2 = 0

∂L

∂λ
= −w1 x1 − w2 x2 + c0= 0

Taking the ratio of the 1st and 2nd equations we obtain

w1

w2
=
α1x2

α2x1

We can now solve the equation for the 2nd quantity as a function of the 1st input quantity
and the prices. Doing so we obtain

x2 =
α2x1w1

α1w2

Now substituting in the income equation we obtain

w1x1 + w2x2 = c0

⇒ w1x1 + w2

[
α2x1w1

α1w2

]
= c0

⇒ w1x1 +
[
α2w1w2

α1w2

]
x1 = c0

⇒ w1x1 +
[
α2w1

α1

]
x1 = c0

⇒ x1

[
w1 +

α2w1

α1

]
= c0
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⇒ x1w1

[
1 +

α2

α1

]
= c0

⇒ x1w1

[
α1 + α2

α1

]
= c0

⇒ x1 =
c0
w1

[
α1

α1 + α2

]

We can now get x2 by substitution

x2 = x1

[
α2w1

α1w2

]

=
c0
w1

[
α1

α1 + α2

] [
α2w1

α1w2

]

=
c0
w2

[
α2

α1 + α2

]

We can find the value of the optimal u by substitution

u = xα1
1 xα2

2

=
(
c0
w1

[
α1

α1 + α2

])α1
(
c0
w2

[
α2

α1 + α2

])α2

= cα1+α2
0 w−α1

1 w−α2
2 αα1

1 αα2
2 (α2 + α2)−α1−α2

This can also be written

u = xα1
1 xα2

2

=
[
c0
w1

(
α1

α1 + α2

)]α1
[
c0
w2

(
α2

α1 + α2

)]α2

=
(

α1

α1 + α2

)α1
(

α2

α1 + α2

)α2
(
c0
w1

)α1
(
c0
w2

)α2

For future reference note that the derivative of the optimal u with respect to c0 is given
by
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u = cα1+α2
0 w−α1

1 w−α2
2 αα1

1 αα2
2 (α2 + α2)−α1−α2

∂u

∂c0
= (α1 + α2)c

α1+α2−1
0 w−α1

1 w−α2
2 αα1

1 αα2
1 (α2 + α2)−α1−α2

= cα1+α2−1
0 w−α1

1 w−α2
2 αα1

1 αα2
1 (α2 + α2)1−α1−α2

We obtain λ by substituting in either the first or second equation as follows

α1x
α1−1
1 xα2

2 − λw1 = 0

⇒ λ =
α1x

α1−1
1 xα2

2

w1

α2x
α1
1 xα2−1

2 − λw2 = 0

⇒ λ =
α2x

α1
1 xα2−1

2

w2

If we now substitute for x1 and x2, we obtain

λ =
α1x

α1−1
1 xα2

2

w1

x1 =
c0
w1

[
α1

α1 + α2

]

x2 =
c0
w2

[
α2

α1 + α2

]

⇒ λ =
α1

(
c0
w1

[
α1

α1 + α2

])α1−1 ( c0
w2

[
α2

α1 + α2

])α2

w1

=
α1c

α1+α2−1
0 w1−α1

1 w−α2
2 αα1−1

1 αα2
2 (α1 + α2)

1−α1−α2

w1

= cα1+α2−1
0 w−α1

1 w−α2
2 αα1

1 αα2
2 (α1 + α2)

1−α1−α2

Thus λ is equal to the derivative of the optimal u with respect to c0.

To check for a maximum or minimum we set up the bordered Hessian as in equa-
tions 14–17 where p = 2 and m = 1. The bordered Hessian in this case is
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HB =




∂2L(x∗, λ∗)
∂x1∂x1

∂2L(x∗, λ∗)
∂x1∂x2

∂g(x∗)
∂x1

∂2L(x∗, λ∗)
∂x2∂x1

∂2L(x∗, λ∗)
∂x2∂x2

∂g(x∗)
∂x2

∂g(x∗)
∂x1

∂g(x∗)
∂x2

0




(47)

We need compute the various elements of the bordered Hessian as follows

L = xα1
1 xα2

2 − λ[w1x1 + w2x2 − c0]

∂L

∂x1
= α1x

α1−1
1 xα2

2 − λw1

∂L

∂x2
= α2x

α1
1 xα2−1

2 − λw2

∂2L

∂x2
1

= (α1)(α1 − 1)xα1−2
1 xα2

2

∂2L

∂x1∂x2
= α1α2x

α1−1
1 xα2−1

2

∂2L

∂x2
2

= (α2)(α2 − 1)xα1
1 xα2−2

2

∂g

∂x1
= w1

∂g

∂x2
= w2

The derivatives of the constraints are constants. The bordered Hessian is given by

HB =




(α1)(α1 − 1)xα1−2
1 xα2

2 α1α2x
α1−1
1 xα2−1

2 w1

α1α2x
α1−1
1 xα2−1

2 (α2)(α2 − 1)xα1
1 xα2−2

2 w2

w1 w2 0




(48)

To find the determinant of the bordered Hessian, expand by the third row as follows
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|HB| = (−1)4w1|

∣∣∣∣∣
α1α2x

α1−1
1 xα2−1

2 w1

(α2)(α2 − 1)xα1
1 xα2−2

2 w2

∣∣∣∣∣+ (−1)5w2

∣∣∣∣∣
(α1)(α1 − 1)xα1−2

1 xα2
2 w1

α1α2x
α1−1
1 xα2−1

2 w2

∣∣∣∣∣ + 0

= w1

∣∣∣∣∣
α1α2x

α1−1
1 xα2−1

2 w1

(α2)(α2 − 1)xα1
1 xα2−2

2 w2

∣∣∣∣∣ − w2

∣∣∣∣∣
(α1)(α1 − 1)xα1−2

1 xα2
2 w1

α1α2x
α1−1
1 xα2−1

2 w2

∣∣∣∣∣

= w1w2α1α2x
α1−1
1 xα2−1

2 − w2
1(α2)(α2 − 1)xα1

1 xα2−2
2

− w2
2(α1)(α1 − 1)xα1−2

1 xα2
2 + w1w2α1α2x

α1−1
1 xα2−1

2

= 2w1w2α1α2xα1−1
1 xα2−1

2 − w2
1(α2)(α2 − 1)xα1

1 xα2−2
2 − w2

2(α1)(α1 − 1)xα1−2
1 xα2

2

(49)

For a maximum we want this expression to be positive. Rewriting it we obtain

2w1w2α1α2x
α1−1
1 xα2−1

2 − w2
1(α2)(α2 − 1)xα1

1 xα2−2
2 − w2

2(α1)(α1 − 1)xα1−2
1 xα2

2 > 0 (50)

We can also write it in the following convenient way

2w1w2α1α2x
α1−1
1 xα2−1

2

+α2w
2
1x
α1
1 xα2−2

2 − α2
2w

2
1x
α1
1 xα2−2

2

+α1w
2
2x

α1−2
1 xα2

2 − α2
1w

2
2x

α1−2
1 xα2

2 > 0

(51)

To eliminate the prices we can substitute from the first-order conditions.

w1 =
α1x

α1−1
1 xα2

2

λ

w2 =
α2x

α1
1 xα2−1

2

λ

This then gives

2
(
α1x

α1−1
1 xα2

2

λ

)(
α2x

α1
1 xα2−1

2

λ

)
α1α2x

α1−1
1 xα2−1

2

+α2

(
α1x

α1−1
1 xα2

2

λ

)2

xα1
1 xα2−2

2 − α2
2

(
α1x

α1−1
1 xα2

2

λ

)2

xα1
1 xα2−2

2

+α1

(
α2x

α1
1 xα2−1

2

λ

)2

xα1−2
1 xα2

2 − α2
1

(
α2x

α1
1 xα2−1

2

λ

)2

xα1−2
1 xα2

2 > 0

(52)
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Multiply both sides by λ2 and combine terms to obtain

2α2
1α

2
2x

3α1−2
1 x3α2−2

2

+α2
1α2x

3α1−2
1 x3α2−2

2 − α2
2α

2
1x

3α1−2
1 x3α2−2

2

+α1α
2
2x

3α1−2
1 x3α2−2

2 − α2
1α

2
2x

3α1−2
1 x3α2−2

2 > 0

(53)

Now factor out x3α1−2
1 x3α2−2

2 to obtain

x3α1−2
1 x3α2−2

2

(
2α2

1α22 + α2
1α2 − α2

2α
2
1 + α1α

2
2 − α2

1α
2
2

)
>0

⇒ x3α1−2
1 x3α2−2

2

(
α2

1α2 + α1α
2
2

)
>0

(54)

With positive values for x1 and x2 the whole expression will be positive if the last term
in parentheses is positive. Then rewrite this expression as

(
α2

1α2 + α1α22
)
> 0 (55)

Now divide both sides by α2
1α

2
2 (which is positive) to obtain

(
1
α2

+
1
α1

)
> 0 (56)

3.7. Some More Example Problems.
(i) opt

x1, x2

[x1x2] s. t.

x1 + x2 = 6
(ii) opt

x1, x2

[x1x2 + 2x1] s.t.

4x1 + 2x2 = 60
(iii) opt

x1, x2

[x2
1 + x2

2] s.t

x1 + 2x2 = 20
(iv) opt

x1, x2

[x1x2] s.t.

x2
1 + 4x2

2 = 1

(v) opt
x1, x2

[x
1
4
1 x

1
2
2 ] s.t.

2x1 + 8x2 = 60

4. THE IMPLICIT FUNCTION THEOREM

4.1. Statement of Theorem. We are often interested in solving implicit systems of equa-
tions for m variables, say x1, x2, . . . , xm in terms of m+p variables where there are a mini-
mum of m equations in the system. We typically label the variables xm+1, xm+2, . . . , xm+p,
y1, y2, . . . , yp. We are frequently interested in the derivatives ∂xi

∂xj
where it is implicit that

all other xk and all y` are held constant. The conditions guaranteeing that we can solve for
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m of the variables in terms of p variables along with a formula for computing derivatives
is given by the implicit function theorem.

Theorem 1 (Implicit Function Theorem). Suppose that φi are real-valued functions defined on
a domain D and continuously differentiable on an open set D1 ⊂ D ⊂ Rm+p, where p > 0 and

φ(x0
1, x

0
2, . . . , x

0
m, y

0
1, y

0
2 , . . . , y

0
p) = φi(x0, y0) = 0,

i = 1, 2, . . . , m, and (x0, y0) ∈ D1.
(57)

Assume the Jacobian matrix [∂φi(x
0, y0)

∂xj
] has rank m. Then there exists a neighborhood Nδ(x0,

y0) ⊂ D1, an open set D2 ⊂ Rp containing y0 and real valued functions ψk, k = 1, 2, . . . , m,
continuously differentiable on D2, such that the following conditions are satisfied:

x0
k = ψk(y0), k = 1, 2, . . . , m. (58)

For every y ∈ D2, we have

φi(ψ1(y), ψ2(y), . . . , ψm(y), y1, y2, . . . , yp ) ≡ 0, i = 1, 2, . . . , m.

or

φi(ψ(y), y) ≡ 0, i = 1, 2, . . . , m.

(59)

We also have that for all (x,y) ∈ Nδ(x0, y0), the Jacobian matrix [∂φi(x, y)
∂xj

] has rank m. Further-
more for y ∈ D2, the partial derivatives of ψ(y) are the solutions of the set of linear equations

m∑

k=1

∂φi(ψ(y), y)
∂xk

∂ψk(y)
∂yj

=
−∂φi(ψ(y), y

∂yj
i = 1, 2, . . . , m (60)

4.2. Example with one equation and three variables. Consider one implicit equation
with three variables.

φ(x0
1, x

0
2, y

0) = 0 (61)

The implicit function theorem says that we can solve equation 61 for x0
1 as a function of

x0
2 and y0, i.e.,

x0
1 = ψ1(x0

2, y
0) (62)

and that

φ(ψ1(x2, y), x2, y) = 0 (63)

The theorem then says that
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∂φ(ψ1(x2, y), x2, y)
∂x1

∂ψ1

∂x2
=

−∂φ(ψ1(x2, y), x2, y)
∂x2

⇒ ∂φ(ψ1(x2, y), x2, y)
∂x1

∂x1(x2, y)
∂x2

= − ∂φ(ψ1(x2, y), x2, y)
∂x2

⇒ ∂x1(x2, y)
∂x2

=
− ∂φ(ψ1(x2, y), x2 , y)

∂x2

∂φ(ψ1(x2, y), x2, y)
∂x1

(64)

Consider the following example.

φ(x0
1, x

0
2, y

0) = 0

y0 − f(x0
1, x

0
2) = 0

(65)

The theorem says that we can solve the equation for x0
1.

x0
1 = ψ1(x0

2, y
0) (66)

It is also true that

φ(ψ1(x2, y), x2, y) = 0

y − f(ψ1(x2, y), x2) = 0
(67)

Now compute the relevant derivatives

∂φ(ψ1(x2, y), x2, y)
∂x1

= − ∂f(ψ1(x2, y), x2)
∂x1

∂φ(ψ1(x2, y), x2, y)
∂x2

= − ∂f(ψ1(x2, y), x2)
∂x2

(68)

The theorem then says that

∂x1(x2, y)
∂x2

= −

[
∂φ(ψ1(x2, y), x2, y)

∂x2

∂φ(ψ1(x2, y), x2, y)
∂x1

]

= −

[
− ∂f(ψ1(x2, y),x2)

∂x2

− ∂f(ψ1(x2, y),x2)
∂x1

]

= −
∂f(ψ1(x2, y),x2)

∂x2

∂f(ψ1(x2, y),x2)
∂x1

(69)

4.3. Example with two equations and three variables. Consider the following system of
equations

φ1(x1, x2, y) = 3x1 + 2x2 + 4y = 0

φ2 (x1, x2, y) = 4x1 + x2 + y = 0
(70)
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The Jacobian is given by

[
∂φ1
∂x1

∂φ1
∂x2

∂φ2
∂x1

∂φ2
∂x2

]
=
[
3 2
4 1

]
(71)

We can solve system 70 for x1 and x2 as functions of y. Move y to the right hand side in
each equation.

3x1 + 2x2 = −4y (72a)

4x1 + x2 = −y (72b)

Now solve equation 72b for x2

x2 = −y − 4x1 (73)

Substitute the solution to equation 73 into equation 72a and simplify

3x1 + 2(−y − 4x1) = −4y

⇒ 3x1 − 2y − 8x1 = −4y

⇒ −5x1 = −2y

⇒ x1 =
2
5
y = ψ1(y)

(74)

Substitute the solution to equation 74 into equation 73 and simplify

x2 = −y − 4
[

2
5
y

]

⇒ x2 = − 5
5
y − 8

5
y

= − 13
5
y = ψ2(y)

(75)

If we substitute these expressions for x1 ad x2 into equation 70 we obtain

φ1

(
2
5
y , − 13

5
y, y

)
) = 3

[
2
5
y

]
+ 2

[
− 13

5
y

]
+ 4y

=
6
5
y − 26

5
y +

20
5
y

= − 20
5
y +

20
5
y = 0

(76)

and
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φ2

(
2
5
y , − 13

5
y, y

)
) = 4

[
2
5
y

]
+
[
− 13

5
y

]
+ y

=
8
5
y − 13

5
y +

5
5
y

=
13
5
y − 13

5
y = 0

(77)

Furthermore

∂ψ1)
∂y

=
2
5

∂ψ2)
∂y

= − 13
5

(78)

We can solve for these partial derivatives using equation 60 as follows

∂φ1

∂x1

∂ψ1

∂y
+

∂φ1

∂x2

∂ψ2

∂y
=

−∂φ1

∂y
(79a)

∂φ2

∂x1

∂ψ1

∂y
+

∂φ2

∂x2

∂ψ2

∂y
=

−∂φ2

∂y
(79b)

Now substitute in the derivatives of φ1 and φ2 with respect to x1, x2, and y.

3
∂ψ1

∂y
+ 2

∂ψ2

∂y
= − 4 (80a)

4
∂ψ1

∂y
+ 1

∂ψ2

∂y
= − 1 (80b)

Solve equation 80b for ∂ψ2
∂y

∂ψ2

∂y
= − 1 − 4

∂ψ1

∂y
(81)

Now substitute the answer from equation 81 into equation 80a

3
∂ψ1

∂y
+ 2

(
− 1 − 4

∂ψ1

∂y

)
= − 4

⇒ 3
∂ψ1

∂y
− 2 − 8

∂ψ1

∂y
= − 4

⇒ − 5
∂ψ1

∂y
= − 2

⇒ ∂ψ1

∂y
=

2
5

(82)

If we substitute equation 82 into equation 81 we obtain
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∂ψ2

∂y
= − 1 − 4

∂ψ1

∂y

⇒ ∂ψ2

∂y
= − 1 − 4

(
2
5

)

=
−5
5

− 8
5

= −13
5

(83)

5. FORMAL ANALYSIS OF LAGRANGIAN MULTIPLIERS AND EQUALITY CONSTRAINED
PROBLEMS

5.1. Definition of the Lagrangian. Consider a function on n variables denoted
f(x) = f(x1, x2, . . . , xn). Suppose x∗ minimizes f(x) for all x εNδ(x∗) that satisfy

gi(x) = 0 i = 1, . . . , m
Assume the Jacobian matrix (J) of the constraint equations gi(x∗) has rank m. Then:

∇f(x∗) =
m∑

i=1

λ∗i∇gi(x∗) (84)

In other words the gradient of f at x∗ is a linear combination of the gradients of gi at x∗

with weights λ∗i . For later reference note that the Jacobian can be written

Jg =




∂g1(x∗)
∂x1

∂g2(x∗)
∂x1

. . .
∂gm(x∗)
∂x1

∂g1(x∗)
∂x2

∂g2(x∗)
∂x2

. . .
∂gm(x∗)
∂x2

...
...

...
...

∂g1(x∗)
∂xn

∂g2(x∗)
∂xn

. . .
∂gm(x∗)
∂xn




(85)

Proof:
By suitable rearrangement of the rows we can always assume the m×m matrix formed

from the first m rows of the Jacobian
(
∂gi(x

∗)
∂xj

)
is non-singular. Therefore the set of linear

equations:

m∑

i=1

∂gi(x∗)
∂xj

λj =
∂f(x∗)
∂xj

j = 1, . . . , m (86)

will have a unique solution λ∗. In matrix notation we can write equation 86 as

Jλ = ∇f
If J is invertible, we can solve the system for λ. Therefore (84) is true for the first m

elements of ∇f(x∗).
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We must show (84) is also true for the last n−m elements. Let x̃ = (xm+1, xm+2, . . . , xn).
Then by using the implicit function theorem we can solve for the first m xs in terms of the
remaining xs or x̃ .

x∗j = hj(x̃∗) j = 1, . . . , m (87)

We can define f(x∗) as

f(x∗) = f(h1(x̃∗), h2(x̃∗) . . .hm(x̃∗), x∗m+1 . . . x
∗
n) (88)

Since we are at a minimum, we know that the first partial derivatives of f with respect
to xm+1, xm+2, . . . , xn must vanish at x∗, i.e.

∂f(x∗)
∂xj

= 0 j = m+ 1, . . . , n

Totally differentiating (88) we obtain

∂f(x∗)
∂xj

=
m∑

k=1

∂f(x∗)
∂xk

∂hk(x̃∗)
∂xj

+
∂f(x∗)
∂xj

= 0

j = m+ 1, . . . , n

(89)

by the implicit function theorem. We can also use the implicit function theorem to find the
derivative of the ith constraint with respect to the jth variable where the jth variable goes
from m+ 1 to n. Applying the theorem to

gi(x∗) = gi(h1(x̃∗), h2(x̃∗) . . .hm(x̃∗), x∗m+1 . . . x
∗
n) = 0

we obtain

m∑

k=1

∂gi(x∗)
∂xk

∂hk(x̃∗)
∂xj

=
−∂gi(x∗)
∂xj

i = 1, . . . , m (90)

Now multiply each side of (90) by λ∗i and add them up.

m∑

i=1

m∑

k=1

λ∗i
∂gi(x∗)
∂xk

∂hk(x̃∗)
∂xj

+ λ∗i
∂gi(x∗)
∂xj

= 0

j = m+ 1, . . . , n

(91)

Now subtract (91) from (89) to obtain:

m∑

k=1

[
∂f(x∗)
∂xk

−
m∑

i=1

λ∗i
∂gi(x∗)
∂xk

]
+
∂f(x∗)
∂xj

−
m∑

i=1

λ∗i
∂gi(x∗)
∂xj

= 0

j = m+ 1, . . . , n

(92)
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The bracket term is zero from (86) so that

∂f(x∗)
∂xj

−
m∑

i=1

λ∗i
∂gi(x∗)
∂xj

= 0 j = m + 1, . . . , n (93)

Since (86) implies this is true, for j = 1, . . . , m we know it is true for j = 1, 2, . . . , n and
we are finished.

The λi are called Lagrange multipliers and the expression

L(x, λ) = f(x)−
m∑

i=1

λigi(x) (94)

is called the Lagrangian function.

5.2. Proof of Necessary Conditions. The necessary conditions for an extreme point are

∇L(x∗, λ∗) = ∇f(x∗) − Jg(x∗)λ = 0

⇒ ∂f(x∗)
∂xj

−
m∑

i=1

λ∗i
∂gi(x∗)
∂xj

= 0 j = m+ 1, . . . , n
(95)

This is obvious from (84) and (94).

5.3. Proof of Sufficient Conditions. The sufficient conditions are repeated here for con-
venience

Let f, g1, . . . , gm be twice continuously differentiable real-valued functions on Rn. If
there exist vectors x∗ ε Rn, λ∗ εRm such that

∇L(x∗λ) = 0 (5)

and for every non-zero vector z εRn satisfying

z′∇gi(x∗) = 0, . . . i = 1, . . . , m (6)

it follows that

z′∇2
xL(x∗, λ∗)z > 0 (7)

then f has a strict local minimum at x∗, subject to gi(x) = 0, i = 1, . . . , , m. If the
inequality in (7) is reversed , then f has strict local maximum at x∗.

Proof:
Assume x∗ is not a strict local minimum. Then there exists a neighborhood Nδ(x∗) and

a sequence {zk}, zk εNδ(x∗), zk 6= x∗ converging to x∗ such that for every zk ε {zk}.

gi(zk) = 0 i = l, . . . , m (96)

f(x∗) ≥ f(zk) (97)
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This simply says that since x∗ is not the minimum value subject to the constraints there
exists a sequence of values in the neighborhood of x∗ that satisfies the constraints and has
an objective function value less than or equal to f(∗).

The proof will require the mean value theorem which is repeated here for completeness.
Mean Value Theorem

Theorem 2. Let f be defined on an open subset (Ω) of Rn and have values in R1. Suppose the set
Ω contains the points a,b and the line segment S joining them, and that f is differentiable at every
point of this segment. Then there exists a point c on S such that

f(b)− f(a) = ∇f(c)′(b− a)

=
∂f(c)
∂x1

(b1 − a1) +
∂f(c)
∂x2

(b2 − a2) + · · ·+ ∂f(c)
∂xn

(bn − an)
(98)

where b is the vector (b1, b2, . . . , bn) and a is the vector (a1, a2, . . . , a
n).

Now let yk and zk be vectors in Rn and let zk = x∗ + θkyk where θk > 0 and || yk ||= 1
so that zk − x∗ = θkyk . The sequence {θk , yk} has a subsequence that converges to (0, ȳ)
where || y ||= 1. Now if we use the mean value theorem we obtain for each k in this
subsequence

gi(zk)− gi(x∗) = θkyk′∇gi(x∗ + γki θ
kyk) = 0, i = 1, . . . , m (99)

where γki is a number between 0 and 1 and gi is the ith constraint. The expression is
equal to zero because we assume that the constraint is satisfied at the optimal point and at
the point zk by equation 98.

Expression 99 follows from the mean value theorem because zk − x∗ = θkyk and with
γki between zero and one, γki θ

kyk is between zk = x∗ + θk and x∗

If we use the mean value theorem to evaluate f(zk) we obtain

f(zk) − f(x∗) = θkyk′∇f(x∗ + ηkθkyk) ≤ 0 (100)
where 0 < ηk < 1. This is less than zero by our assumption in equation 97.
If we divide (99) and (100) by θk and take the limit as k → ∞ we obtain

lim
k→∞

[
yk′∇gi(x∗ + ηkθkyk)

]
= ȳ′∇gi(x∗) = 0 i = 1, 2, . . . , m (101)

lim
k→∞

[
yk′∇f(x∗ + ηkθkyk)

]
= ȳ′∇fi(x∗) ≤ 0 (102)

Now remember from Taylor’s theorem that we can write the Lagrangian in (95) as

L(zk, λ∗) = L(x∗, λ∗) + (zk − x∗)′∇xL(x∗, λ∗)

+
1
2
θk

2
(zk − x∗)′∇2

xL(x∗ + βkθkyk, λ∗)(zk − x∗)

= L(x∗, λ∗) + θkyk′∇xL(x∗, λ∗) +
1
2
θk

2
yk′∇2

xL(x∗ + βkθkyk, λ∗)yk

(103)
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where 0 < βk < 1.
Now note that

L(zk, λ∗) = f(zk) −
m∑

i=1

λigi(zk)

L(x∗, λ∗) = f(x∗) −
m∑

i=1

λigi(x∗)

and that at the optimum or at the assumed point zk, gi(·) = 0.
Also ∇L(x∗, λ∗) = 0 at the optimum so the second term on the right hand side of (103)

is zero. Move the first term to the left hand side to obtain

L(zk, λ∗) − L(x∗, λ∗) =
1
2
θk

2
yk′∇2

xL(x∗ + βkθkyk, λ∗)yk (104)

Because we assumed f(x∗) ≥ f(zk) in (97) and that g(·) is zero at either x∗ or zk, it is
clear that

L(zk, λ∗) − L(x∗, λ∗) ≤ 0 (105)
Therefore,

1
2
θk

2
yk′∇2

xL(x∗ + βkθkyk, λ∗)yk ≤ 0 (106)

Divide both sides by 1
2θ
k2

to obtain

yk
′∇2

xL(x∗ + βkθkyk, λ∗)yk ≤ 0 (107)
Now take the limit as k → ∞ to obtain

ȳ′∇2
xL(x∗, λ∗)ȳ ≤ 0 (108)

We are finished since ȳ 6= 0, and by equation 101,

ȳ′∇gi(x∗) = 0, i = 1, 2, . . . , m

that is, if x∗ is not a minimum then we have a non-zero vector y satisfying

ȳ′∇gi(x∗) = 0, i = 1, 2, . . . , m (109)
where ȳ′∇2

xL(x∗, λ∗)ȳ ≤ 0 . But if x∗ is a minimum then equation 6 rather than (108)
will hold.


