GENERAL ANALYSIS OF MAXIMA/MINIMA IN CONSTRAINED OPTIMIZATION PROBLEMS

1. Statement of the Problem

Consider the problem defined by
$\underset{x}{\operatorname{maximize}} f(x)$
subject to $g(x)=0$
where $g(x)=0$ denotes an $m \times 1$ vector of constraints, $m<n$. We can also write this as

$$
\max _{x_{1}, x_{2}, \ldots x_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

subject to

$$
\begin{gather*}
g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
g_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \\
\vdots \tag{1}\\
g_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0
\end{gather*}
$$

The solution can be obtained using the Lagrangian function

$$
\begin{align*}
L(x ; \lambda) & =f(x)-\lambda^{\prime} g(x) \quad \text { where } \lambda^{\prime}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right) \\
& =f\left(x_{1}, x_{2}, \ldots\right)-\lambda_{1} g_{1}(x)-\lambda_{2} g_{2}(x)-\cdots-\lambda_{m} g_{m}(x) \tag{2}
\end{align*}
$$

Notice that the gradient of L will involve a set of derivatives, i.e.

$$
\nabla_{x} L=\nabla_{x} f(x)-\left(\frac{\partial g}{\partial x}\right) \lambda
$$

where

$$
\left(\frac{\partial g}{\partial x}\right)=J_{g}=\left(\begin{array}{cccc}
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g_{2}\left(x^{*}\right)}{\partial x_{1}} & \cdots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{1}} \tag{3}\\
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{2}} & \frac{\partial g_{2}\left(x^{*}\right)}{\partial x_{2}} & \cdots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{2}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{n}} & \frac{\partial g_{2}\left(x^{*}\right)}{\partial x_{n}} & \cdots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{n}}
\end{array}\right)
$$

There will be one equation for each x. There will also be equations involving the derivatives of L with respect to each λ.

2. Necessary Conditions for an Extreme Point

The necessary conditions for an extremum of f with the equality constraints $g(x)=0$ are that

$$
\begin{equation*}
\nabla L\left(x^{*}, \lambda^{*}\right)=0 \tag{4}
\end{equation*}
$$

where it is implicit that the gradient in (3) is with respect to both x and λ.

3. Sufficient Conditions for an Extreme Point

3.1. Statement of Conditions. Let f, g_{1}, \ldots, g_{m} be twice continuously differentiable realvalued functions on R^{n}. If there exist vectors $x^{*} \epsilon R^{n}, \lambda^{*} \epsilon R^{m}$ such that

$$
\begin{equation*}
\nabla L\left(x^{*}, \lambda^{*}\right)=0 \tag{5}
\end{equation*}
$$

and for every non-zero vector $z \epsilon R^{n}$ satisfying

$$
\begin{equation*}
z^{\prime} \nabla g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m \tag{6}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
z^{\prime} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}\right) z>0, \tag{7}
\end{equation*}
$$

then f has a strict local minimum at x^{*}, subject to $g_{i}(x)=0, i=1, \ldots, m$. If the inequality in (7) is reversed, then f has strict local maximum at x^{*}. The idea is that if equation 5 holds, then if equation 7 holds for all vectors satisfying equation $6, f$ will have a strict local minimum at x^{*}.
3.2. Checking the Sufficient Conditions. These conditions for a maximum or minimum can be stated in terms of the Hessian of the Lagrangian function (or bordered Hessian). Let f, g_{1}, \ldots, g_{m} be twice continuously differentiable real valued functions. If there exist vectors $x^{*} \in R^{n}, \lambda^{*} \in R^{m}$, such that

$$
\begin{equation*}
\nabla L\left(x^{*}, \lambda^{*}\right)=0 \tag{8}
\end{equation*}
$$

and if

$$
(-1)^{m} \operatorname{det}\left[\begin{array}{cccccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \ldots & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{p}} & \frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{1}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{1}} \tag{9}\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{p} \partial x_{1}} & \ldots & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{p} \partial x_{p}} & \frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{p}} & \ldots & d \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{p}} \\
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{1}} & \ldots & \frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{p}} & 0 & \ldots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{1}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{p}} & 0 & \ldots & 0
\end{array}\right)>0
$$

for $p=m+1, \ldots, n$, then f has a strict local minimum at x^{*}, such that

$$
\begin{equation*}
g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m \tag{10}
\end{equation*}
$$

We check the determinants in (9) starting with the one that has $m+1$ elements in each row and column of the Hessian and $m+1$ elements in each row or column of the derivative of a given constraint with respect to x. Note that m does not change as we check the various determinants so that they will all be of the same sign for a given m.

If there exist vectors $x^{*} \in R^{n}, \lambda^{*} \epsilon R^{m}$, such that

$$
\begin{equation*}
\nabla L\left(x^{*}, \lambda^{*}\right)=0 \tag{11}
\end{equation*}
$$

and if

$$
(-1)^{p} \operatorname{det}\left[\begin{array}{cccccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \ldots & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{p}} & \frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{1}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{1}} \tag{12}\\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{p} \partial x_{1}} & \ldots & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{p} \partial x_{p}} & \frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{p}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{p}} \\
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{1}} & \ldots & \frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{p}} & 0 & \ldots & 0 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{1}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{p}} & \cdot & \cdot & \cdot \\
\hline & 0 & \ldots & 0
\end{array}\right)>0
$$

for $p=m+1, \ldots, n$ then f has a strict local maximum at x^{*}, such that

$$
\begin{equation*}
g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m . \tag{13}
\end{equation*}
$$

We check the determinants in (12) starting with the one that has $m+1$ elements in each row and column of the Hessian and $m+1$ elements in each row or column of the derivative of a given constraint with respect to x. Note that p changes as we check the various determinants so that they will alternate in sign for a given m.

Consider the case where $n=2$ and $m=1$. Note that the first matrix we check has $p=m+1=2$. Then the condition for a minimum is

$$
(-1) \operatorname{det}\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \tag{14}\\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & 0
\end{array}\right)>0
$$

This, of course, implies

$$
\operatorname{det}\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \tag{15}\\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & 0
\end{array}\right]<0
$$

The condition for a maximum is

$$
(-1)^{2} \operatorname{det}\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \tag{16}\\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & 0
\end{array}\right)>0
$$

This, of course, implies

$$
\operatorname{det}\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \tag{17}\\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & 0
\end{array}\right]>0
$$

Also consider the case where $n=3$ and $m=1$. We start with $p=m+1=2$ and continue until $p=n$. Then the condition for a minimum is

$$
\left.\begin{array}{c}
(-1) \operatorname{det}\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda *\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & 0
\end{array}\right]>0 \\
(-1) \operatorname{det}\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{3}} \\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{3}} \\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{3} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{3} \partial x_{2}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{3} \partial x_{3}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{3}}
\end{array}\right]>0 \tag{18}
\end{array}\right]>\frac{\partial g\left(x^{*}\right)}{\partial x_{3}} \quad 0
$$

The condition for a maximum is

$$
\left.\begin{array}{c}
(-1)^{2} \operatorname{det}\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & 0
\end{array}\right]>0 \\
{[-1)^{3} \operatorname{det}\left[\begin{array}{cccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{3}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{3}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{3}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{3}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{3}} & 0
\end{array}\right]>0} \tag{19}
\end{array}\right]
$$

3.3. Sufficient Condition for a Maximum and Minimum and Positive and Negative Definite Quadratic Forms. Note that at the optimum, equation 6 is just linear in the sense that the derivatives

$$
\frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{j}}
$$

are fixed numbers at the point x^{*} and we can write equation 6 as

$$
\begin{gather*}
z^{\prime} J_{g}=0 \\
\left(z_{1} z_{2} \ldots z_{n}\right)\left(\begin{array}{cccc}
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g_{2}\left(x^{*}\right)}{\partial x_{1}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{1}} \\
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{2}} & \frac{\partial g_{2}\left(x^{*}\right)}{\partial x_{2}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{2}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{n}} & \frac{\partial g_{2}\left(x^{*}\right)}{\partial x_{n}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{n}}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right) \tag{20}
\end{gather*}
$$

where J_{g} is the matrix $\left\{\frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{j}}\right\}$ and where there is a column of the J_{g} for each constraint and a row for each x variable we are considering. This then implies that the sufficient condition for a strict local maximum of the function f is that $\left|H_{B}\right|$ has the same sign as $(-1)^{p}$, that is the last $n-m$ leading principal minors of H_{B} alternate in sign on the constraint set
denoted by equation 6 . This is the same as the condition that the quadratic form $z^{\prime} H_{B} z$ be negative definite on the constraint set

$$
\begin{equation*}
z^{\prime} \nabla g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m \tag{21}
\end{equation*}
$$

If $\left|H_{B}\right|$ and these last $n-m$ leading principal minors all have the same sign as $(-1)^{m}$, then $z^{\prime} H_{B} z$ is positive definite on the constraint set $z^{\prime} \nabla g_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m$ and the function has strict local minimum at the point x^{*}.

If both of conditions are violated by non-zero leading principal minors, then $z^{\prime} H_{B} z$ is indefinite on the constraint set and we cannot determine whether the function has a maximum or a minimum.
3.4. Example 1: Minimizing Cost Subject to an Output Constraint. Consider a production function given by

$$
\begin{equation*}
y=20 x_{1}-x_{1}^{2}+15 x_{2}-x_{2}^{2} \tag{22}
\end{equation*}
$$

Let the prices of x_{1} and x_{2} be 10 and 5 respectively with an output constraint of 55 . Then to minimize the cost of producing 55 units of output given this prices we set up the following Lagrangian

$$
\begin{align*}
L & =10 x_{1}+5 x_{2}-\lambda\left(20 x_{1}-x_{1}^{2}+15 x_{2}-x_{2}^{2}-55\right) \\
\frac{\partial L}{\partial x_{1}} & =10-\lambda\left(20-2 x_{1}\right)=0 \\
\frac{\partial L}{\partial x_{2}} & =5-\lambda\left(15-2 x_{2}\right)=0 \tag{23}\\
\frac{\partial L}{\partial \lambda} & =(-1)\left(20 x_{1}-x_{1}^{2}+15 x_{2}-x_{2}^{2}-55\right)=0
\end{align*}
$$

If we take the ratio of the first two first order conditions we obtain

$$
\begin{align*}
\frac{10}{5} & =2=\frac{20-2 x_{1}}{15-2 x_{2}} \\
\Rightarrow 30-4 x_{2} & =20-2 x_{1} \tag{24}\\
\Rightarrow 10-4 x_{2} & =-2 x_{1} \\
\Rightarrow x_{1} & =2 x_{2}-5
\end{align*}
$$

Now plug this into the negative of the last first order condition to obtain

$$
\begin{equation*}
20\left(2 x_{2}-5\right)-\left(2 x_{2}-5\right)^{2}+15 x_{2}-x_{2}^{2}-55=0 \tag{25}
\end{equation*}
$$

Multiplying out and solving for x_{2} will give

$$
\begin{align*}
40 x_{2}-100-\left(4 x_{2}^{2}-20 x_{2}+25\right)+15 x_{2}-x_{2}^{2}-55 & =0 \\
\Rightarrow 40 x_{2}-100-4 x_{2}^{2}+20 x_{2}-25+15 x_{2}-x_{2}^{2}-55 & =0 \\
\Rightarrow-5 x_{2}^{2}+75 x_{2}-180 & =0 \tag{26}\\
\Rightarrow 5 x_{2}^{2}-75 x_{2}+180 & =0 \\
\Rightarrow x_{2}^{2}-15 x_{2}+36 & =0
\end{align*}
$$

Now solve this quadratic equation for x_{2} as follows

$$
\begin{align*}
x_{2} & =\frac{15 \pm \sqrt{225-4(36)}}{2} \\
& =\frac{15 \pm \sqrt{81}}{2} \tag{27}\\
& =12 \text { or } 3
\end{align*}
$$

Therefore,

$$
\begin{align*}
x_{1} & =2 x_{2}-5 \\
& =19 \text { or } 1 \tag{28}
\end{align*}
$$

The Lagrangian multiplier λ can be obtained by solving the first equation that was obtained by differentiating L with respect to x_{1}

$$
\begin{align*}
10-\lambda(20-(19)) & =0 \\
\Rightarrow \lambda & =-\frac{5}{9} \\
10-\lambda(20-2(1)) & =0 \tag{29}\\
\Rightarrow \lambda & =\frac{5}{9}
\end{align*}
$$

To check for a maximum or minimum we set up the bordered Hessian as in equations 14-17. The bordered Hessian in this case is

$$
H_{B}=\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \tag{30}\\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & 0
\end{array}\right]
$$

We only need to compute one determinant. We compute the various elements of the bordered Hessian as follows

$$
\begin{align*}
L & =10 x_{1}+5 x_{2}-\lambda\left(20 x_{1}-x_{1}^{2}+15 x_{2}-x_{2}^{2}-55\right) \\
\frac{\partial L}{\partial x_{1}} & =10-\lambda\left(20-2 x_{1}\right) \\
\frac{\partial L}{\partial x_{2}} & =5-\lambda\left(15-2 x_{2}\right) \\
\frac{\partial^{2} L}{\partial x_{1} \partial x_{1}} & =2 \lambda \\
\frac{\partial^{2} L}{\partial x_{1} \partial x_{2}} & =0 \tag{31}\\
\frac{\partial^{2} L}{\partial x_{2} \partial x_{2}} & =2 \lambda \\
\frac{\partial g}{\partial x_{1}} & =20-2 x_{1} \\
\frac{\partial g}{\partial x_{2}} & =15-2 x_{2}
\end{align*}
$$

Consider first the point $(19,12,-5 / 9)$. The bordered Hessian is given by

$$
\begin{align*}
& H_{B}=\left[\begin{array}{ccc}
2 \lambda & 0 & 20-2 x_{1} \\
0 & 2 \lambda & 15-2 x_{2} \\
20-2 x_{1} & 15-2 x_{2} & 0
\end{array}\right] \\
& x_{1}=19, \quad x_{2}=12, \quad \lambda=-\frac{5}{9} \tag{32}\\
& H_{B}=\left[\begin{array}{ccc}
-\frac{10}{9} & 0 & -18 \\
0 & -\frac{10}{9} & -9 \\
-18 & -9 & 0
\end{array}\right]
\end{align*}
$$

The determinant of the bordered Hessian is

$$
\begin{align*}
\left|H_{B}\right| & =(-1)^{2}\left(-\frac{10}{9}\right)\left|\begin{array}{cc}
-\frac{10}{9} & -9 \\
-9 & 0
\end{array}\right|+(-1)^{3}(0)\left|\begin{array}{cc}
-\frac{10}{9} & -9 \\
-9 & 0
\end{array}\right|+(-1)^{4}(-18)\left|\begin{array}{cc}
0 & -\frac{10}{9} \\
-18 & -9
\end{array}\right| \\
& =\left(-\frac{10}{9}\right)(-81)+0+(-18)(-20) \tag{33}\\
& =90+360=450
\end{align*}
$$

Here $p=2$ so the condition for a maximum is that $(-1)^{2}\left|H_{B}\right|>0$, so this point is a relative maximum.

Now consider the other point, $(1,3,5 / 9)$. The bordered Hessian is given by

$$
\begin{align*}
& H_{B}=\left[\begin{array}{ccc}
2 \lambda & 0 & 20-2 x_{1} \\
0 & 2 \lambda & 15-2 x_{2} \\
20-2 x_{1} & 15-2 x_{2} & 0
\end{array}\right] \\
& x_{1}=1, \quad x_{2}=3, \quad \lambda=\frac{5}{9} \tag{34}\\
& H_{B}=\left[\begin{array}{ccc}
\frac{10}{9} & 0 & 18 \\
0 & \frac{10}{9} & 9 \\
18 & 9 & 0
\end{array}\right]
\end{align*}
$$

The determinant of the bordered Hessian is

$$
\begin{align*}
\left|H_{B}\right| & \left.=(-1)^{2}\left(\frac{10}{9}\right)\left|\begin{array}{cc}
\frac{10}{9} & 9 \\
9 & 0
\end{array}\right|+(-1)^{3}(0)| | \begin{array}{cc}
\frac{10}{9} & 9 \\
9 & 0
\end{array}\left|+(-1)^{4}(18)\right| \begin{array}{cc}
0 & \frac{10}{9} \\
18 & 9
\end{array} \right\rvert\, \\
& =\left(\frac{10}{9}\right)(-81)+0+(18)(-20) \tag{35}\\
& =-90-360=-450
\end{align*}
$$

The condition for a minimum is that $(-1)\left|H_{B}\right|>0$, so this point is a relative minimum. The minimum cost is obtained by substituting into the cost expression to obtain

$$
\begin{equation*}
C=10(1)+5(3)=25 \tag{36}
\end{equation*}
$$

3.5. Example 2: Maximizing Output Subject to a Cost Constraint. Consider a production function given by

$$
\begin{equation*}
y=30 x_{1}+12 x_{2}-x_{1}^{2}+x_{1} x_{2}-x_{2}^{2} \tag{37}
\end{equation*}
$$

Let the prices of x_{1} and x_{2} be 10 and 4 respectively with an cost constraint of $\$ 260$. Then to maximize output with a cost of $\$ 260$ given these prices we set up the following Lagrangian

$$
\begin{align*}
L & =30 x_{1}+12 x_{2}-x_{1}^{2}+x_{1} x_{2}-x_{2}^{2}-\lambda\left(10 x_{1}+4 x_{2}-260\right) \\
\frac{\partial L}{\partial x_{1}} & =30-2 x_{1}+x_{2}-10 \lambda=0 \\
\frac{\partial L}{\partial x_{2}} & =12+x_{1}-2 x_{2}-4 \lambda=0 \tag{38}\\
\frac{\partial L}{\partial \lambda} & =-10 x_{1}-4 x_{2}+260=0
\end{align*}
$$

If we take the ratio of the first two first order conditions we obtain

$$
\begin{align*}
\frac{10}{4} & =2.5=\frac{30-2 x_{1}+x_{2}}{12+x_{1}-2 x_{2}} \\
\Rightarrow 30+2.5 x_{1}-5 x_{2} & =30-2 x_{1}+x_{2} \tag{39}\\
\Rightarrow 4.5 x_{1} & =6 x_{2} \\
\Rightarrow x_{1} & =1.3 \overline{3} x_{2}
\end{align*}
$$

Now plug this value for x_{1} into the negative of the last first order condition to obtain

$$
\begin{align*}
10 x_{1}+4 x_{2}-260 & =0 \\
\Rightarrow(10)\left(1.3 \overline{3} x_{2}\right)+4 x_{2}-260 & =0 \\
\Rightarrow 13.3 \overline{3} x_{2}+4 x_{2} & =260 \\
\Rightarrow 17.3 \overline{3} x_{2} & =260 \tag{40}\\
\Rightarrow x_{2} & =15 \\
\Rightarrow x_{1} & =7\left(\frac{4}{3}\right)(15)=20
\end{align*}
$$

We can also find the maximum y by substituting in for x_{1} and x_{2}.

$$
\begin{align*}
y & =30 x_{1}+12 x_{2}-x_{1}^{2}+x_{1} x_{2}-x_{2}^{2} \\
& =(30)(20)+(12)(15)-(20)^{2}-(20)(15)-(15)^{2} \tag{41}\\
& =600+180-400+300-225 \\
& =455
\end{align*}
$$

The Lagrangian multiplier λ can be obtained by solving the first equation that was obtained by differentiating L with respect to x_{1}

$$
\begin{align*}
30-2 x_{1}+x_{2}-10 \lambda & =0 \\
\Rightarrow 30-2(20)+(15)-10 \lambda & =0 \\
\Rightarrow 30-40+15-10 \lambda & =0 \tag{42}\\
\Rightarrow 5 & =10 \lambda \\
\Rightarrow \lambda & =\frac{1}{2}
\end{align*}
$$

To check for a maximum or minimum we set up the bordered Hessian as in equations $14-17$ where $p=2$ and $m=1$. The bordered Hessian in this case is

$$
H_{B}=\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \tag{43}\\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & 0
\end{array}\right]
$$

We compute the various elements of the bordered Hessian as follows

$$
\begin{align*}
L & =30 x_{1}+12 x_{2}-x_{1}^{2}+x_{1} x_{2}-x_{2}^{2}-\lambda\left(10 x_{1}+4 x_{2}-260\right) \\
\frac{\partial L}{\partial x_{1}} & =30-2 x_{1}+x_{2}-10 \lambda \\
\frac{\partial L}{\partial x_{2}} & =12+x_{1}-2 x_{2}-4 \lambda \\
\frac{\partial^{2} L}{\partial x_{1} \partial x_{1}} & =-2 \\
\frac{\partial^{2} L}{\partial x_{1} \partial x_{2}} & =1 \tag{44}\\
\frac{\partial^{2} L}{\partial x_{2} \partial x_{2}} & =-2 \\
\frac{\partial g}{\partial x_{1}} & =10 \\
\frac{\partial g}{\partial x_{2}} & =4
\end{align*}
$$

The derivatives are all constants. The bordered Hessian is given by

$$
H_{B}=\left[\begin{array}{ccc}
-2 & 1 & 10 \tag{45}\\
1 & -2 & 4 \\
10 & 4 & 0
\end{array}\right]
$$

The determinant of the bordered Hessian is

$$
\begin{align*}
\mid H_{B \mid} & \left.=(-1)^{2}(-2)\left|\begin{array}{cc}
-2 & 4 \\
4 & 0
\end{array}\right|+(-1)^{3}(1)\left|\begin{array}{cc}
1 & 4 \\
10 & 0
\end{array}\right|+(-1)^{4}(10)| | \begin{array}{cc}
1 & -2 \\
10 & 4
\end{array} \right\rvert\, \\
& =(-2)(-16)-(-40)+(10)(24) \tag{46}\\
& =32+40+240=312
\end{align*}
$$

The condition for a maximum is that $(-1)^{2}\left|H_{B}\right|>0$, so this point is a relative maximum.
3.6. Example 3: Maximizing Utility Subject to an Income Constraint. Consider a utility function given by

$$
u=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}
$$

Now maximize this function subject to the constraint that

$$
w_{1} x_{1}+w_{2} x_{2}=c_{0}
$$

Set up the Lagrangian problem:

$$
L=x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}-\lambda\left[w_{1} x_{1}+w_{2} x_{2}-c_{0}\right]
$$

The first order conditions are

$$
\begin{aligned}
\frac{\partial L}{\partial x_{1}} & =\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}-\lambda w_{1}=0 \\
\frac{\partial L}{\partial x_{2}} & =\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}-\lambda w_{2}=0 \\
\frac{\partial L}{\partial \lambda} & =-w_{1} x_{1}-w_{2} x_{2}+c_{0}=0
\end{aligned}
$$

Taking the ratio of the $1^{\text {st }}$ and $2^{\text {nd }}$ equations we obtain

$$
\frac{w_{1}}{w_{2}}=\frac{\alpha_{1} x_{2}}{\alpha_{2} x_{1}}
$$

We can now solve the equation for the $2^{\text {nd }}$ quantity as a function of the $1^{\text {st }}$ input quantity and the prices. Doing so we obtain

$$
x_{2}=\frac{\alpha_{2} x_{1} w_{1}}{\alpha_{1} w_{2}}
$$

Now substituting in the income equation we obtain

$$
\begin{aligned}
w_{1} x_{1}+w_{2} x_{2} & =c_{0} \\
\Rightarrow w_{1} x_{1}+w_{2}\left[\frac{\alpha_{2} x_{1} w_{1}}{\alpha_{1} w_{2}}\right] & =c_{0} \\
\Rightarrow w_{1} x_{1}+\left[\frac{\alpha_{2} w_{1} w_{2}}{\alpha_{1} w_{2}}\right] x_{1} & =c_{0} \\
\Rightarrow w_{1} x_{1}+\left[\frac{\alpha_{2} w_{1}}{\alpha_{1}}\right] x_{1} & =c_{0} \\
\Rightarrow x_{1}\left[w_{1}+\frac{\alpha_{2} w_{1}}{\alpha_{1}}\right] & =c_{0}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow x_{1} w_{1}\left[1+\frac{\alpha_{2}}{\alpha_{1}}\right] & =c_{0} \\
\Rightarrow x_{1} w_{1}\left[\frac{\alpha_{1}+\alpha_{2}}{\alpha_{1}}\right] & =c_{0} \\
\Rightarrow x_{1} & =\frac{c_{0}}{w_{1}}\left[\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right]
\end{aligned}
$$

We can now get x_{2} by substitution

$$
\begin{aligned}
x_{2} & =x_{1}\left[\frac{\alpha_{2} w_{1}}{\alpha_{1} w_{2}}\right] \\
& =\frac{c_{0}}{w_{1}}\left[\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right]\left[\frac{\alpha_{2} w_{1}}{\alpha_{1} w_{2}}\right] \\
& =\frac{c_{0}}{w_{2}}\left[\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}}\right]
\end{aligned}
$$

We can find the value of the optimal u by substitution

$$
\begin{aligned}
u & =x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \\
& =\left(\frac{c_{0}}{w_{1}}\left[\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right]\right)^{\alpha_{1}}\left(\frac{c_{0}}{w_{2}}\left[\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}}\right]\right)^{\alpha_{2}} \\
& =c_{0}^{\alpha_{1}+\alpha_{2}} w_{1}^{-\alpha_{1}} w_{2}^{-\alpha_{2}} \alpha_{1}^{\alpha_{1}} \alpha_{2}^{\alpha_{2}}\left(\alpha_{2}+\alpha_{2}\right)^{-\alpha_{1}-\alpha_{2}}
\end{aligned}
$$

This can also be written

$$
\begin{aligned}
u & =x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}} \\
& =\left[\frac{c_{0}}{w_{1}}\left(\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right)\right]^{\alpha_{1}}\left[\frac{c_{0}}{w_{2}}\left(\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}}\right)\right]^{\alpha_{2}} \\
& =\left(\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right)^{\alpha_{1}}\left(\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}}\right)^{\alpha_{2}}\left(\frac{c_{0}}{w_{1}}\right)^{\alpha_{1}}\left(\frac{c_{0}}{w_{2}}\right)^{\alpha_{2}}
\end{aligned}
$$

For future reference note that the derivative of the optimal u with respect to c_{0} is given by

$$
\begin{aligned}
u & =c_{0}^{\alpha_{1}+\alpha_{2}} w_{1}^{-\alpha_{1}} w_{2}^{-\alpha_{2}} \alpha_{1}^{\alpha_{1}} \alpha_{2}^{\alpha_{2}}\left(\alpha_{2}+\alpha_{2}\right)^{-\alpha_{1}-\alpha_{2}} \\
\frac{\partial u}{\partial c_{0}} & =\left(\alpha_{1}+\alpha_{2}\right) c_{0}^{\alpha_{1}+\alpha_{2}-1} w_{1}^{-\alpha_{1}} w_{2}^{-\alpha_{2}} \alpha_{1}^{\alpha_{1}} \alpha_{1}^{\alpha_{2}}\left(\alpha_{2}+\alpha_{2}\right)^{-\alpha_{1}-\alpha_{2}} \\
& =c_{0}^{\alpha_{1}+\alpha_{2}-1} w_{1}^{-\alpha_{1}} w_{2}^{-\alpha_{2}} \alpha_{1}^{\alpha_{1}} \alpha_{1}^{\alpha_{2}}\left(\alpha_{2}+\alpha_{2}\right)^{1-\alpha_{1}-\alpha_{2}}
\end{aligned}
$$

We obtain λ by substituting in either the first or second equation as follows

$$
\begin{aligned}
\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}-\lambda w_{1} & =0 \\
\Rightarrow \lambda & =\frac{\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}}{w_{1}} \\
\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}-\lambda w_{2} & =0 \\
\Rightarrow \lambda & =\frac{\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}}{w_{2}}
\end{aligned}
$$

If we now substitute for x_{1} and x_{2}, we obtain

$$
\begin{aligned}
\lambda & =\frac{\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}}{w_{1}} \\
x_{1} & =\frac{c_{0}}{w_{1}}\left[\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right] \\
x_{2} & =\frac{c_{0}}{w_{2}}\left[\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}}\right] \\
\Rightarrow \lambda & =\frac{\alpha_{1}\left(\frac{c_{0}}{w_{1}}\left[\frac{\alpha_{1}}{\alpha_{1}+\alpha_{2}}\right]\right)^{\alpha_{1}-1}\left(\frac{c_{0}}{w_{2}}\left[\frac{\alpha_{2}}{\alpha_{1}+\alpha_{2}}\right]\right)^{\alpha_{2}}}{w_{1}} \\
& =\frac{\alpha_{1} c_{0}^{\alpha_{1}+\alpha_{2}-1} w_{1}^{1-\alpha_{1}} w_{2}^{-\alpha_{2}} \alpha_{1}^{\alpha_{1}-1} \alpha_{2}^{\alpha_{2}}\left(\alpha_{1}+\alpha_{2}\right)^{1-\alpha_{1}-\alpha_{2}}}{w_{1}} \\
& =c_{0}^{\alpha_{1}+\alpha_{2}-1} w_{1}^{-\alpha_{1}} w_{2}^{-\alpha_{2}} \alpha_{1}^{\alpha_{1}} \alpha_{2}^{\alpha_{2}}\left(\alpha_{1}+\alpha_{2}\right)^{1-\alpha_{1}-\alpha_{2}}
\end{aligned}
$$

Thus λ is equal to the derivative of the optimal u with respect to c_{0}.

To check for a maximum or minimum we set up the bordered Hessian as in equations $14-17$ where $p=2$ and $m=1$. The bordered Hessian in this case is

$$
H_{B}=\left[\begin{array}{ccc}
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{1} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{1}} \tag{47}\\
\frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} L\left(x^{*}, \lambda^{*}\right)}{\partial x_{2} \partial x_{2}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} \\
\frac{\partial g\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g\left(x^{*}\right)}{\partial x_{2}} & 0
\end{array}\right]
$$

We need compute the various elements of the bordered Hessian as follows

$$
\begin{aligned}
L & =x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}}-\lambda\left[w_{1} x_{1}+w_{2} x_{2}-c_{0}\right] \\
\frac{\partial L}{\partial x_{1}} & =\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}-\lambda w_{1} \\
\frac{\partial L}{\partial x_{2}} & =\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}-\lambda w_{2} \\
\frac{\partial^{2} L}{\partial x_{1}^{2}} & =\left(\alpha_{1}\right)\left(\alpha_{1}-1\right) x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}} \\
\frac{\partial^{2} L}{\partial x_{1} \partial x_{2}} & =\alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} \\
\frac{\partial^{2} L}{\partial x_{2}^{2}} & =\left(\alpha_{2}\right)\left(\alpha_{2}-1\right) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2} \\
\frac{\partial g}{\partial x_{1}} & =w_{1} \\
\frac{\partial g}{\partial x_{2}} & =w_{2}
\end{aligned}
$$

The derivatives of the constraints are constants. The bordered Hessian is given by

$$
H_{B}=\left[\begin{array}{ccc}
\left(\alpha_{1}\right)\left(\alpha_{1}-1\right) x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}} & \alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} & w_{1} \tag{48}\\
\alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} & \left(\alpha_{2}\right)\left(\alpha_{2}-1\right) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2} & w_{2} \\
w_{1} & w_{2} & 0
\end{array}\right]
$$

To find the determinant of the bordered Hessian, expand by the third row as follows

$$
\begin{align*}
\left|H_{B}\right| & \left.=(-1)^{4} w_{1}| | \begin{array}{cc}
\alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} & w_{1} \\
\left(\alpha_{2}\right)\left(\alpha_{2}-1\right) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2} & w_{2}
\end{array}\left|+(-1)^{5} w_{2}\right| \begin{array}{cc}
\left(\alpha_{1}\right)\left(\alpha_{1}-1\right) x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}} & w_{1} \\
\alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} & w_{2}
\end{array} \right\rvert\,+0 \\
= & w_{1}\left|\begin{array}{cc}
\alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} & w_{1} \\
\left(\alpha_{2}\right)\left(\alpha_{2}-1\right) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2} & w_{2}
\end{array}\right|-w_{2}\left|\begin{array}{c}
\left(\alpha_{1}\right)\left(\alpha_{1}-1\right) x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}} \\
w_{1} \\
\alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} \\
=
\end{array}\right| \begin{array}{l}
w_{2} w_{2} \alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1}-w_{1}^{2}\left(\alpha_{2}\right)\left(\alpha_{2}-1\right) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2} \\
\quad-w_{2}^{2}\left(\alpha_{1}\right)\left(\alpha_{1}-1\right) x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}}+w_{1} w_{2} \alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2-1}} \\
=2 w_{1} w_{2} \alpha_{1} \alpha 2 x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1}-w_{1}^{2}\left(\alpha_{2}\right)\left(\alpha_{2}-1\right) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2}-w_{2}^{2}\left(\alpha_{1}\right)\left(\alpha_{1}-1\right) x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}}
\end{array}
\end{align*}
$$

For a maximum we want this expression to be positive. Rewriting it we obtain

$$
\begin{equation*}
2 w_{1} w_{2} \alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1}-w_{1}^{2}\left(\alpha_{2}\right)\left(\alpha_{2}-1\right) x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2}-w_{2}^{2}\left(\alpha_{1}\right)\left(\alpha_{1}-1\right) x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}}>0 \tag{50}
\end{equation*}
$$

We can also write it in the following convenient way

$$
\begin{gather*}
2 w_{1} w_{2} \alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} \\
+\alpha_{2} w_{1}^{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2}-\alpha_{2}^{2} w_{1}^{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2} \tag{51}\\
+\alpha_{1} w_{2}^{2} x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}}-\alpha_{1}^{2} w_{2}^{2} x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}}>0
\end{gather*}
$$

To eliminate the prices we can substitute from the first-order conditions.

$$
\begin{aligned}
& w_{1}=\frac{\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}}{\lambda} \\
& w_{2}=\frac{\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}}{\lambda}
\end{aligned}
$$

This then gives

$$
\begin{gather*}
2\left(\frac{\alpha_{1} x_{1}^{\alpha 1-1} x_{2}^{\alpha_{2}}}{\lambda}\right)\left(\frac{\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}}{\lambda}\right) \alpha_{1} \alpha_{2} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}-1} \\
+\alpha_{2}\left(\frac{\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}}{\lambda}\right)^{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2}-\alpha_{2}^{2}\left(\frac{\alpha_{1} x_{1}^{\alpha_{1}-1} x_{2}^{\alpha_{2}}}{\lambda}\right)^{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-2} \tag{52}\\
+\alpha_{1}\left(\frac{\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}}{\lambda}\right)^{2} x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}}-\alpha_{1}^{2}\left(\frac{\alpha_{2} x_{1}^{\alpha_{1}} x_{2}^{\alpha_{2}-1}}{\lambda}\right)^{2} x_{1}^{\alpha_{1}-2} x_{2}^{\alpha_{2}}>0
\end{gather*}
$$

Multiply both sides by λ^{2} and combine terms to obtain

$$
\begin{gather*}
2 \alpha_{1}^{2} \alpha_{2}^{2} x_{1}^{3 \alpha_{1}-2} x_{2}^{3 \alpha_{2}-2} \\
+\alpha_{1}^{2} \alpha_{2} x_{1}^{3 \alpha_{1}-2} x_{2}^{3 \alpha_{2}-2}-\alpha_{2}^{2} \alpha_{1}^{2} x_{1}^{3 \alpha 1-2} x_{2}^{3 \alpha_{2}-2} \tag{53}\\
+\alpha_{1} \alpha_{2}^{2} x_{1}^{3 \alpha_{1}-2} x_{2}^{3 \alpha_{2}-2}-\alpha_{1}^{2} \alpha_{2}^{2} x_{1}^{3 \alpha_{1}-2} x_{2}^{3 \alpha_{2}-2}>0
\end{gather*}
$$

Now factor out $x_{1}^{3 \alpha_{1}-2} x_{2}^{3 \alpha_{2}-2}$ to obtain

$$
\begin{align*}
x_{1}^{3 \alpha_{1}-2} x_{2}^{3 \alpha_{2}-2}\left(2 \alpha_{1}^{2} \alpha 2^{2}\right. & \left.+\alpha_{1}^{2} \alpha_{2}-\alpha_{2}^{2} \alpha_{1}^{2}+\alpha_{1} \alpha_{2}^{2}-\alpha_{1}^{2} \alpha_{2}^{2}\right)
\end{align*}>0 .
$$

With positive values for x_{1} and x_{2} the whole expression will be positive if the last term in parentheses is positive. Then rewrite this expression as

$$
\begin{equation*}
\left(\alpha_{1}^{2} \alpha_{2}+\alpha_{1} \alpha 2^{2}\right)>0 \tag{55}
\end{equation*}
$$

Now divide both sides by $\alpha_{1}^{2} \alpha_{2}^{2}$ (which is positive) to obtain

$$
\begin{equation*}
\left(\frac{1}{\alpha_{2}}+\frac{1}{\alpha_{1}}\right)>0 \tag{56}
\end{equation*}
$$

3.7. Some More Example Problems.

(i) $\underset{x_{1}, x_{2}}{\operatorname{opt}}\left[x_{1} x_{2}\right]$ s.t.

$$
x_{1}+x_{2}=6
$$

(ii) $\underset{x_{1}, x_{2}}{\text { opt }}\left[x_{1} x_{2}+2 x_{1}\right] \quad$ s.t.

$$
4 x_{1}+2 x_{2}=60
$$

(iii) $\operatorname{opt}_{x_{1}, x_{2}}\left[x_{1}^{2}+x_{2}^{2}\right] \quad$ s.t

$$
x_{1}+2 x_{2}=20
$$

(iv) $\operatorname{opt}_{x_{1}, x_{2}}\left[x_{1} x_{2}\right]$ s.t.

$$
x_{1}^{2}+4 x_{2}^{2}=1
$$

(v) $\underset{x_{1}, x_{2}}{\operatorname{opt}}\left[x_{1}^{\frac{1}{4}} x_{2}^{\frac{1}{2}}\right] \quad$ s.t.
$2 x_{1}+8 x_{2}=60$

4. The Implicit Function Theorem

4.1. Statement of Theorem. We are often interested in solving implicit systems of equations for m variables, say $x_{1}, x_{2}, \ldots, x_{m}$ in terms of $m+p$ variables where there are a minimum of m equations in the system. We typically label the variables $x_{m+1}, x_{m+2}, \ldots, x_{m+p}$, $\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{p}$. We are frequently interested in the derivatives $\frac{\partial x_{i}}{\partial x_{j}}$ where it is implicit that all other x_{k} and all y_{ℓ} are held constant. The conditions guaranteeing that we can solve for
m of the variables in terms of p variables along with a formula for computing derivatives is given by the implicit function theorem.

Theorem 1 (Implicit Function Theorem). Suppose that ϕ_{i} are real-valued functions defined on a domain D and continuously differentiable on an open set $D^{1} \subset D \subset R^{m+p}$, where $p>0$ and

$$
\begin{align*}
\phi\left(x_{1}^{0}, x_{2}^{0}, \ldots, x_{m}^{0}, y_{1}^{0}, y_{2}^{0}, \ldots, y_{p}^{0}\right)= & \phi_{i}\left(x^{0}, y^{0}\right)=0 \\
& i=1,2, \ldots, m, \text { and }\left(x^{0}, y^{0}\right) \in D^{1} . \tag{57}
\end{align*}
$$

Assume the Jacobian matrix $\left[\frac{\partial \phi_{i}\left(x^{0}, y^{0}\right)}{\partial x_{j}}\right]$ has rank m. Then there exists a neighborhood $N_{\delta}\left(x^{0}\right.$, $\left.y^{0}\right) \subset D^{1}$, an open set $D^{2} \subset R^{p}$ containing y^{0} and real valued functions $\psi_{k}, k=1,2, \ldots, m$, continuously differentiable on D^{2}, such that the following conditions are satisfied:

$$
\begin{equation*}
x_{k}^{0}=\psi_{k}\left(y^{0}\right), k=1,2, \ldots, m . \tag{58}
\end{equation*}
$$

For every $y \in D^{2}$, we have

$$
\begin{align*}
& \phi_{i}\left(\psi_{1}(y), \psi_{2}(y), \ldots, \psi_{m}(y), y_{1}, y_{2}, \ldots, y_{p}\right) \equiv 0, \quad i=1,2, \ldots, m . \\
& \quad \text { or } \tag{59}\\
& \phi_{i}(\psi(y), y) \equiv 0, \quad i=1,2, \ldots, m .
\end{align*}
$$

We also have that for all $(x, y) \in N_{\delta}\left(x^{0}, y^{0}\right)$, the Jacobian matrix $\left[\frac{\partial \phi_{i}(x, y)}{\partial x_{j}}\right]$ has rank m. Furthermore for $y \in D^{2}$, the partial derivatives of $\psi(y)$ are the solutions of the set of linear equations

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{\partial \phi_{i}(\psi(y), y)}{\partial x_{k}} \frac{\partial \psi_{k}(y)}{\partial y_{j}}=\frac{-\partial \phi_{i}(\psi(y), y}{\partial y_{j}} \quad i=1,2, \ldots, m \tag{60}
\end{equation*}
$$

4.2. Example with one equation and three variables. Consider one implicit equation with three variables.

$$
\begin{equation*}
\phi\left(x_{1}^{0}, x_{2}^{0}, y^{0}\right)=0 \tag{61}
\end{equation*}
$$

The implicit function theorem says that we can solve equation 61 for x_{1}^{0} as a function of x_{2}^{0} and y^{0}, i.e.,

$$
\begin{equation*}
x_{1}^{0}=\psi_{1}\left(x_{2}^{0}, y^{0}\right) \tag{62}
\end{equation*}
$$

and that

$$
\begin{equation*}
\phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)=0 \tag{63}
\end{equation*}
$$

The theorem then says that

$$
\begin{align*}
\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}} \frac{\partial \psi_{1}}{\partial x_{2}} & =\frac{-\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}} \\
\Rightarrow \frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}} \frac{\partial x_{1}\left(x_{2}, y\right)}{\partial x_{2}} & =-\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}} \tag{64}\\
\Rightarrow \frac{\partial x_{1}\left(x_{2}, y\right)}{\partial x_{2}} & =\frac{-\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}}}{\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}}}
\end{align*}
$$

Consider the following example.

$$
\begin{align*}
\phi\left(x_{1}^{0}, x_{2}^{0}, y^{0}\right) & =0 \\
y^{0}-f\left(x_{1}^{0}, x_{2}^{0}\right) & =0 \tag{65}
\end{align*}
$$

The theorem says that we can solve the equation for x_{1}^{0}.

$$
\begin{equation*}
x_{1}^{0}=\psi_{1}\left(x_{2}^{0}, y^{0}\right) \tag{66}
\end{equation*}
$$

It is also true that

$$
\begin{align*}
\phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right) & =0 \\
y-f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right) & =0 \tag{67}
\end{align*}
$$

Now compute the relevant derivatives

$$
\begin{align*}
& \frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}}=-\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{1}} \\
& \frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}}=-\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{2}} \tag{68}
\end{align*}
$$

The theorem then says that

$$
\begin{align*}
\frac{\partial x_{1}\left(x_{2}, y\right)}{\partial x_{2}} & =-\left[\frac{\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{2}}}{\frac{\partial \phi\left(\psi_{1}\left(x_{2}, y\right), x_{2}, y\right)}{\partial x_{1}}}\right] \\
& =-\left[\frac{-\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{2}}}{-\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{1}}}\right] \tag{69}\\
& =-\frac{\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{2}}}{\frac{\partial f\left(\psi_{1}\left(x_{2}, y\right), x_{2}\right)}{\partial x_{1}}}
\end{align*}
$$

4.3. Example with two equations and three variables. Consider the following system of equations

$$
\begin{align*}
& \phi_{1}\left(x_{1}, x_{2}, y\right)=3 x_{1}+2 x_{2}+4 y=0 \\
& \phi_{2}\left(x_{1}, x_{2}, y\right)=4 x_{1}+x_{2}+y=0 \tag{70}
\end{align*}
$$

The Jacobian is given by

$$
\left[\begin{array}{ll}
\frac{\partial \phi_{1}}{\partial x_{1}} & \frac{\partial \phi_{1}}{\partial x_{2}} \tag{71}\\
\frac{\partial \phi_{2}}{\partial x_{1}} & \frac{\partial \phi_{2}}{\partial x_{2}}
\end{array}\right]=\left[\begin{array}{ll}
3 & 2 \\
4 & 1
\end{array}\right]
$$

We can solve system 70 for x_{1} and x_{2} as functions of y. Move y to the right hand side in each equation.

$$
\begin{array}{r}
3 x_{1}+2 x_{2}=-4 y \\
4 x_{1}+x_{2}=-y \tag{72b}
\end{array}
$$

Now solve equation 72 b for x_{2}

$$
\begin{equation*}
x_{2}=-y-4 x_{1} \tag{73}
\end{equation*}
$$

Substitute the solution to equation 73 into equation 72 a and simplify

$$
\begin{align*}
& 3 x_{1}+2\left(-y-4 x_{1}\right)=-4 y \\
& \Rightarrow 3 x_{1}-2 y-8 x_{1}=-4 y \\
& \Rightarrow-5 x_{1}=-2 y \tag{74}\\
& \Rightarrow x_{1}=\frac{2}{5} y=\psi_{1}(y)
\end{align*}
$$

Substitute the solution to equation 74 into equation 73 and simplify

$$
\begin{align*}
& x_{2}=-y-4\left[\frac{2}{5} y\right] \\
& \Rightarrow x_{2}=-\frac{5}{5} y-\frac{8}{5} y \tag{75}\\
&=-\frac{13}{5} y=\psi_{2}(y)
\end{align*}
$$

If we substitute these expressions for x_{1} ad x_{2} into equation 70 we obtain

$$
\begin{align*}
\left.\phi_{1}\left(\frac{2}{5} y,-\frac{13}{5} y, y\right)\right) & =3\left[\frac{2}{5} y\right]+2\left[-\frac{13}{5} y\right]+4 y \\
& =\frac{6}{5} y-\frac{26}{5} y+\frac{20}{5} y \tag{76}\\
& =-\frac{20}{5} y+\frac{20}{5} y=0
\end{align*}
$$

and

$$
\begin{align*}
\left.\phi_{2}\left(\frac{2}{5} y,-\frac{13}{5} y, y\right)\right) & =4\left[\frac{2}{5} y\right]+\left[-\frac{13}{5} y\right]+y \\
& =\frac{8}{5} y-\frac{13}{5} y+\frac{5}{5} y \tag{77}\\
& =\frac{13}{5} y-\frac{13}{5} y=0
\end{align*}
$$

Furthermore

$$
\begin{align*}
& \frac{\left.\partial \psi_{1}\right)}{\partial y}=\frac{2}{5} \tag{78}\\
& \frac{\left.\partial \psi_{2}\right)}{\partial y}=-\frac{13}{5}
\end{align*}
$$

We can solve for these partial derivatives using equation 60 as follows

$$
\begin{align*}
& \frac{\partial \phi_{1}}{\partial x_{1}} \frac{\partial \psi_{1}}{\partial y}+\frac{\partial \phi_{1}}{\partial x_{2}} \frac{\partial \psi_{2}}{\partial y}=\frac{-\partial \phi_{1}}{\partial y} \tag{79a}\\
& \frac{\partial \phi_{2}}{\partial x_{1}} \frac{\partial \psi_{1}}{\partial y}+\frac{\partial \phi_{2}}{\partial x_{2}} \frac{\partial \psi_{2}}{\partial y}=\frac{-\partial \phi_{2}}{\partial y} \tag{79b}
\end{align*}
$$

Now substitute in the derivatives of ϕ_{1} and ϕ_{2} with respect to x_{1}, x_{2}, and y.

$$
\begin{align*}
& 3 \frac{\partial \psi_{1}}{\partial y}+2 \frac{\partial \psi_{2}}{\partial y}=-4 \tag{80a}\\
& 4 \frac{\partial \psi_{1}}{\partial y}+1 \frac{\partial \psi_{2}}{\partial y}=-1 \tag{80b}
\end{align*}
$$

Solve equation 80 b for $\frac{\partial \psi_{2}}{\partial y}$

$$
\begin{equation*}
\frac{\partial \psi_{2}}{\partial y}=-1-4 \frac{\partial \psi_{1}}{\partial y} \tag{81}
\end{equation*}
$$

Now substitute the answer from equation 81 into equation 80 a

$$
\begin{align*}
3 \frac{\partial \psi_{1}}{\partial y}+2\left(-1-4 \frac{\partial \psi_{1}}{\partial y}\right) & =-4 \\
\Rightarrow 3 \frac{\partial \psi_{1}}{\partial y}-2-8 \frac{\partial \psi_{1}}{\partial y} & =-4 \tag{82}\\
\Rightarrow-5 \frac{\partial \psi_{1}}{\partial y} & =-2 \\
\Rightarrow \frac{\partial \psi_{1}}{\partial y} & =\frac{2}{5}
\end{align*}
$$

If we substitute equation 82 into equation 81 we obtain

$$
\begin{align*}
\frac{\partial \psi_{2}}{\partial y} & =-1-4 \frac{\partial \psi_{1}}{\partial y} \\
\Rightarrow \frac{\partial \psi_{2}}{\partial y} & =-1-4\left(\frac{2}{5}\right) \tag{83}\\
& =\frac{-5}{5}-\frac{8}{5}=-\frac{13}{5}
\end{align*}
$$

5. Formal Analysis of Lagrangian Multipliers and Equality Constrained

Problems

5.1. Definition of the Lagrangian. Consider a function on n variables denoted $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Suppose x^{*} minimizes $f(x)$ for all $x \epsilon N_{\delta}\left(x^{*}\right)$ that satisfy

$$
g_{i}(x)=0 \quad i=1, \ldots, m
$$

Assume the Jacobian matrix (J) of the constraint equations $g_{i}\left(x^{*}\right)$ has rank m. Then:

$$
\begin{equation*}
\nabla f\left(x^{*}\right)=\sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right) \tag{84}
\end{equation*}
$$

In other words the gradient of f at x^{*} is a linear combination of the gradients of g_{i} at x^{*} with weights λ_{i}^{*}. For later reference note that the Jacobian can be written

$$
J_{g}=\left(\begin{array}{cccc}
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{1}} & \frac{\partial g_{2}\left(x^{*}\right)}{\partial x_{1}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{1}} \tag{85}\\
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{2}} & \frac{\partial g_{2}\left(x^{*}\right)}{\partial x_{2}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{2}} \\
\vdots & \vdots & \vdots & \vdots \\
\frac{\partial g_{1}\left(x^{*}\right)}{\partial x_{n}} & \frac{\partial g_{2}\left(x^{*}\right)}{\partial x_{n}} & \ldots & \frac{\partial g_{m}\left(x^{*}\right)}{\partial x_{n}}
\end{array}\right)
$$

Proof:

By suitable rearrangement of the rows we can always assume the $m \times m$ matrix formed from the first m rows of the Jacobian $\left(\frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{j}}\right)$ is non-singular. Therefore the set of linear equations:

$$
\begin{equation*}
\sum_{i=1}^{m} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{j}} \lambda_{j}=\frac{\partial f\left(x^{*}\right)}{\partial x_{j}} \quad j=1, \ldots, m \tag{86}
\end{equation*}
$$

will have a unique solution λ^{*}. In matrix notation we can write equation 86 as

$$
J \lambda=\nabla f
$$

If J is invertible, we can solve the system for λ. Therefore (84) is true for the first m elements of $\nabla f\left(x^{*}\right)$.

We must show (84) is also true for the last $n-m$ elements. Let $\tilde{x}=\left(x_{m+1}, x_{m+2}, \ldots, x_{n}\right)$. Then by using the implicit function theorem we can solve for the first $m x \mathrm{~s}$ in terms of the remaining x s or \tilde{x}.

$$
\begin{equation*}
x_{j}^{*}=h_{j}\left(\tilde{x}^{*}\right) \quad j=1, \ldots, m \tag{87}
\end{equation*}
$$

We can define $f\left(x^{*}\right)$ as

$$
\begin{equation*}
f\left(x^{*}\right)=f\left(h_{1}\left(\tilde{x}^{*}\right), h_{2}\left(\tilde{x}^{*}\right) \ldots h_{m}\left(\tilde{x}^{*}\right), x_{m+1}^{*} \ldots x_{n}^{*}\right) \tag{88}
\end{equation*}
$$

Since we are at a minimum, we know that the first partial derivatives of f with respect to $x_{m+1}, x_{m+2}, \ldots, x_{n}$ must vanish at x^{*}, i.e.

$$
\frac{\partial f\left(x^{*}\right)}{\partial x_{j}}=0 \quad j=m+1, \ldots, n
$$

Totally differentiating (88) we obtain

$$
\begin{gather*}
\frac{\partial f\left(x^{*}\right)}{\partial x_{j}}=\sum_{k=1}^{m} \frac{\partial f\left(x^{*}\right)}{\partial x_{k}} \frac{\partial h_{k}\left(\tilde{x}^{*}\right)}{\partial x_{j}}+\frac{\partial f\left(x^{*}\right)}{\partial x_{j}}=0 \tag{89}\\
j=m+1, \ldots, n
\end{gather*}
$$

by the implicit function theorem. We can also use the implicit function theorem to find the derivative of the i th constraint with respect to the j th variable where the j th variable goes from $m+1$ to n. Applying the theorem to

$$
g_{i}\left(x^{*}\right)=g_{i}\left(h_{1}\left(\tilde{x}^{*}\right), h_{2}\left(\tilde{x}^{*}\right) \ldots h_{m}\left(\tilde{x}^{*}\right), x_{m+1}^{*} \ldots x_{n}^{*}\right)=0
$$

we obtain

$$
\begin{equation*}
\sum_{k=1}^{m} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{k}} \frac{\partial h_{k}\left(\tilde{x}^{*}\right)}{\partial x_{j}}=\frac{-\partial g_{i}\left(x^{*}\right)}{\partial x_{j}} \quad i=1, \ldots, m \tag{90}
\end{equation*}
$$

Now multiply each side of (90) by λ_{i}^{*} and add them up.

$$
\begin{gather*}
\sum_{i=1}^{m} \sum_{k=1}^{m} \lambda_{i}^{*} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{k}} \frac{\partial h_{k}\left(\tilde{x}^{*}\right)}{\partial x_{j}}+\lambda_{i}^{*} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{j}}=0 \tag{91}\\
j=m+1, \ldots, n
\end{gather*}
$$

Now subtract (91) from (89) to obtain:

$$
\begin{gather*}
\sum_{k=1}^{m}\left[\frac{\partial f\left(x^{*}\right)}{\partial x_{k}}-\sum_{i=1}^{m} \lambda_{i}^{*} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{k}}\right]+\frac{\partial f\left(x^{*}\right)}{\partial x_{j}}-\sum_{i=1}^{m} \lambda_{i}^{*} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{j}}=0 \tag{92}\\
j=m+1, \ldots, n
\end{gather*}
$$

The bracket term is zero from (86) so that

$$
\begin{equation*}
\frac{\partial f\left(x^{*}\right)}{\partial x_{j}}-\sum_{i=1}^{m} \lambda_{i}^{*} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{j}}=0 \quad j=m+1, \ldots, n \tag{93}
\end{equation*}
$$

Since (86) implies this is true, for $j=1, \ldots, m$ we know it is true for $j=1,2, \ldots, n$ and we are finished.

The λ_{i} are called Lagrange multipliers and the expression

$$
\begin{equation*}
L(x, \lambda)=f(x)-\sum_{i=1}^{m} \lambda_{i} g_{i}(x) \tag{94}
\end{equation*}
$$

is called the Lagrangian function.
5.2. Proof of Necessary Conditions. The necessary conditions for an extreme point are

$$
\begin{align*}
& \nabla L\left(x^{*}, \lambda^{*}\right)=\nabla f\left(x^{*}\right)-J_{g}\left(x^{*}\right) \lambda=0 \\
& \Rightarrow \frac{\partial f\left(x^{*}\right)}{\partial x_{j}}-\sum_{i=1}^{m} \lambda_{i}^{*} \frac{\partial g_{i}\left(x^{*}\right)}{\partial x_{j}}=0 \quad j=m+1, \ldots, n \tag{95}
\end{align*}
$$

This is obvious from (84) and (94).
5.3. Proof of Sufficient Conditions. The sufficient conditions are repeated here for convenience

Let f, g_{1}, \ldots, g_{m} be twice continuously differentiable real-valued functions on R^{n}. If there exist vectors $x^{*} \epsilon R^{n}, \lambda^{*} \epsilon R^{m}$ such that

$$
\begin{equation*}
\nabla L\left(x^{*} \lambda\right)=0 \tag{5}
\end{equation*}
$$

and for every non-zero vector $z \epsilon R^{n}$ satisfying

$$
\begin{equation*}
z^{\prime} \nabla g_{i}\left(x^{*}\right)=0, \ldots i=1, \ldots, m \tag{6}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
z^{\prime} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}\right) z>0 \tag{7}
\end{equation*}
$$

then f has a strict local minimum at x^{*}, subject to $g_{i}(x)=0, i=1, \ldots, m$. If the inequality in (7) is reversed, then f has strict local maximum at x^{*}.

Proof:
Assume x^{*} is not a strict local minimum. Then there exists a neighborhood $N_{\delta}\left(x^{*}\right)$ and a sequence $\left\{z^{k}\right\}, z_{k} \in N_{\delta}\left(x^{*}\right), z^{k} \neq x^{*}$ converging to x^{*} such that for every $\mathrm{z}^{\mathrm{k}} \in\left\{\mathrm{z}^{\mathrm{k}}\right\}$.

$$
\begin{gather*}
g_{i}\left(z^{k}\right)=0 \quad i=l, \ldots, m \tag{96}\\
f\left(x^{*}\right) \geq f\left(z^{k}\right) \tag{97}
\end{gather*}
$$

This simply says that since x^{*} is not the minimum value subject to the constraints there exists a sequence of values in the neighborhood of x^{*} that satisfies the constraints and has an objective function value less than or equal to $f\left({ }^{*}\right)$.

The proof will require the mean value theorem which is repeated here for completeness.

Mean Value Theorem

Theorem 2. Let f be defined on an open subset (Ω) of R^{n} and have values in R^{1}. Suppose the set Ω contains the points a, b and the line segment S joining them, and that f is differentiable at every point of this segment. Then there exists a point c on S such that

$$
\begin{align*}
f(b)-f(a) & =\nabla f(c)^{\prime}(b-a) \\
& =\frac{\partial f(c)}{\partial x_{1}}\left(b_{1}-a_{1}\right)+\frac{\partial f(c)}{\partial x_{2}}\left(b_{2}-a_{2}\right)+\cdots+\frac{\partial f(c)}{\partial x_{n}}\left(b_{n}-a_{n}\right) \tag{98}
\end{align*}
$$

where b is the vector $\left(b_{1}, b_{2}, \ldots, b^{n}\right)$ and a is the vector $\left(a_{1}, a_{2}, \ldots, a^{n}\right)$.
Now let y^{k} and z^{k} be vectors in R^{n} and let $z^{k}=x^{*}+\theta^{k} y^{k}$ where $\theta^{k}>0$ and $\left\|y^{k}\right\|=1$ so that $z^{k}-x *=\theta^{k} y^{k}$. The sequence $\left\{\theta^{k}, y^{k}\right\}$ has a subsequence that converges to $(0, \bar{y})$ where $\|y\|=1$. Now if we use the mean value theorem we obtain for each k in this subsequence

$$
\begin{equation*}
g_{i}\left(z^{k}\right)-g_{i}\left(x^{*}\right)=\theta^{k} y^{k \prime} \nabla g_{i}\left(x^{*}+\gamma_{i}^{k} \theta^{k} y^{k}\right)=0, \quad i=1, \ldots, m \tag{99}
\end{equation*}
$$

where γ_{i}^{k} is a number between 0 and 1 and g_{i} is the i th constraint. The expression is equal to zero because we assume that the constraint is satisfied at the optimal point and at the point z^{k} by equation 98 .

Expression 99 follows from the mean value theorem because $z^{k}-x^{*}=\theta^{k} y^{k}$ and with γ_{i}^{k} between zero and one, $\gamma_{i}^{k} \theta^{k} y^{k}$ is between $z^{k}=x^{*}+\theta^{k}$ and x^{*}

If we use the mean value theorem to evaluate $f\left(z_{k}\right)$ we obtain

$$
\begin{equation*}
f\left(z^{k}\right)-f\left(x^{*}\right)=\theta^{k} y^{k \prime} \nabla f\left(x^{*}+\eta^{k} \theta^{k} y^{k}\right) \leq 0 \tag{100}
\end{equation*}
$$

where $0<\eta_{k}<1$. This is less than zero by our assumption in equation 97 .
If we divide (99) and (100) by θ^{k} and take the limit as $\mathrm{k} \rightarrow \infty$ we obtain

$$
\begin{gather*}
\lim _{k \rightarrow \infty}\left[y^{k \prime} \nabla g_{i}\left(x^{*}+\eta^{k} \theta^{k} y^{k}\right)\right]=\bar{y}^{\prime} \nabla g_{i}\left(x^{*}\right)=0 \quad i=1,2, \ldots, m \tag{101}\\
\lim _{k \rightarrow \infty}\left[y^{k \prime} \nabla f\left(x^{*}+\eta^{k} \theta^{k} y^{k}\right)\right]=\bar{y}^{\prime} \nabla f_{i}\left(x^{*}\right) \leq 0 \tag{102}
\end{gather*}
$$

Now remember from Taylor's theorem that we can write the Lagrangian in (95) as

$$
\begin{align*}
L\left(z^{k}, \lambda^{*}\right)= & L\left(x^{*}, \lambda^{*}\right)+\left(z^{k}-x^{*}\right)^{\prime} \nabla_{x} L\left(x^{*}, \lambda^{*}\right) \\
& +\frac{1}{2} \theta^{k^{2}}\left(z^{k}-x^{*}\right)^{\prime} \nabla_{x}^{2} L\left(x^{*}+\beta^{k} \theta^{k} y^{k}, \lambda^{*}\right)\left(z^{k}-x^{*}\right) \tag{103}\\
= & L\left(x^{*}, \lambda^{*}\right)+\theta^{k} y^{k \prime} \nabla_{x} L\left(x^{*}, \lambda^{*}\right)+\frac{1}{2} \theta^{k^{2}} y^{k \prime} \nabla_{x}^{2} L\left(x^{*}+\beta^{k} \theta^{k} y^{k}, \lambda^{*}\right) y^{k}
\end{align*}
$$

where $0<\beta^{k}<1$.
Now note that

$$
\begin{aligned}
& L\left(z^{k}, \lambda^{*}\right)=f\left(z^{k}\right)-\sum_{i=1}^{m} \lambda^{i} g_{i}\left(z^{k}\right) \\
& L\left(x^{*}, \lambda^{*}\right)=f\left(x^{*}\right)-\sum_{i=1}^{m} \lambda_{i} g_{i}\left(x^{*}\right)
\end{aligned}
$$

and that at the optimum or at the assumed point $z^{k}, g_{i}(\cdot)=0$.
Also $\nabla L\left(x^{*}, \lambda^{*}\right)=0$ at the optimum so the second term on the right hand side of (103) is zero. Move the first term to the left hand side to obtain

$$
\begin{equation*}
L\left(z^{k}, \lambda^{*}\right)-L\left(x^{*}, \lambda^{*}\right)=\frac{1}{2} \theta^{k^{2}} y^{k \prime} \nabla_{x}^{2} L\left(x^{*}+\beta^{k} \theta^{k} y^{k}, \lambda^{*}\right) y^{k} \tag{104}
\end{equation*}
$$

Because we assumed $f\left(x^{*}\right) \geq f\left(z^{k}\right)$ in (97) and that $g(\cdot)$ is zero at either x^{*} or z^{k}, it is clear that

$$
\begin{equation*}
L\left(z^{k}, \lambda^{*}\right)-L\left(x^{*}, \lambda^{*}\right) \leq 0 \tag{105}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\frac{1}{2} \theta^{k^{2}} y^{k \prime} \nabla_{x}^{2} L\left(x^{*}+\beta^{k} \theta^{k} y^{k}, \lambda^{*}\right) y^{k} \leq 0 \tag{106}
\end{equation*}
$$

Divide both sides by $\frac{1}{2} \theta^{k^{2}}$ to obtain

$$
\begin{equation*}
y^{k^{\prime}} \nabla_{x}^{2} L\left(x^{*}+\beta^{k} \theta^{k} y^{k}, \lambda^{*}\right) y^{k} \leq 0 \tag{107}
\end{equation*}
$$

Now take the limit as $k \rightarrow \infty$ to obtain

$$
\begin{equation*}
\bar{y}^{\prime} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}\right) \bar{y} \leq 0 \tag{108}
\end{equation*}
$$

We are finished since $\bar{y} \neq 0$, and by equation 101,

$$
\bar{y}^{\prime} \nabla g_{i}\left(x^{*}\right)=0, \quad i=1,2, \ldots, m
$$

that is, if x^{*} is not a minimum then we have a non-zero vector y satisfying

$$
\begin{equation*}
\bar{y}^{\prime} \nabla g_{i}\left(x^{*}\right)=0, \quad i=1,2, \ldots, m \tag{109}
\end{equation*}
$$

where $\bar{y}^{\prime} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}\right) \bar{y} \leq 0$. But if x^{*} is a minimum then equation 6 rather than (108) will hold.

