
SIMPLE MULTIVARIATE OPTIMIZATION

1. DEFINITION OF LOCAL MAXIMA AND LOCAL MINIMA

1.1. Functions of 2 variables. Let f(x1, x2) be defined on a region D in <2 containing the point (a, b). Then

a: f(a, b) is a local maximum value of f if f(a, b) ≥ f(x1, x2) for all domain points (x1, x2) in an open
disk centered at (a, b).

b: f(a, b) is a local minimum value of f if f(a, b) ≤ f(x1, x2) for all domain points (x1, x2) in an open
disk centered at (a, b).

1.2. Functions of n variables.

a: Consider a real valued function f with domain D in <n. Then f is said to have a local minimum at
a point x∗ ∈ D if there exists a real number δ > 0 such that

f(x) ≥ f(x∗) ∀ x ∈ D satisfying ‖x − x∗‖ < δ (1)

b: Consider a real valued function f with domain D in <n. Then f is said to have a local maximum at
a point x∗ ∈ D if there exists a real number δ > 0 such that

f(x) ≤ f(x∗) ∀ x ∈ D satisfying ‖x − x∗‖ < δ (2)

c: A real valued function f with domain D in <n is said to have a local extremum at a point x∗ ∈ D if
either equation 1 or equation 2 holds.

d: The function f has a global maximum at x∗ ε D if 2 holds for all x ε D and similarly for a global
minimum.

2. DEFINITION OF THE GRADIENT AND HESSIAN OF A FUNCTION OF n VARIABLES

2.1. Gradient of f. The gradient of a function of n variables f(x1, x2, · · · , xn) is defined as follows.

∇ f(x) =
(

∂f

∂x1

∂f

∂x2
. . .

∂f

∂xn

)′

=




∂f
∂x1

∂f
∂x2

...
∂f

∂xn




(3)
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2.2. Hessian matrix of f. The Hessian matrix of a function of n variables f(x1, x2, · · · , xn) is as follows.

∇2 f(x) =
[

∂2f

∂xi∂xj

]
i, j = 1, 2, . . . , n

=




∂2f(x0)
∂x1 ∂x1

∂2f(x0)
∂x1 ∂x2

. . . ∂2f(x0)
∂x1 ∂xn

∂2f(x0)
∂x2 ∂x1

∂2f(x0)
∂x2 ∂x2

. . . ∂2f(x0)
∂x2 ∂xn

...
...

...
...

∂2f(x0)
∂xn ∂x1

∂2f(x0)
∂xn ∂x2

. . . ∂2f(x0)
∂xn ∂xn




(4)

3. NECESSARY CONDITIONS FOR EXTREME POINTS

3.1. First derivative test for local extreme values.

Theorem 1. Let x∗ be an interior point of a domain D in Rn and assume that f is twice continuously differentiable
on D. It is necessary for a local minimum of f at x∗ that

∇f(x∗) = 0 (5)
This implies that

∂f(x∗)
∂x1

= 0

∂f(x∗)
∂x2

= 0

...

∂f(x∗)
∂xn

= 0

(6)

Theorem 2. Let x∗ be an interior point of a domain D in Rn and assume that f is twice continuously differentiable
on D. It is necessary for a local maximum of f at x∗ that

∇f(x∗) = 0 (7)

3.2. Graphical illustration. Figure 1 shows the relative maximum of a function. The plane that is tangent
to the surface at the point where the gradient is equal to zero is horizontal in the f(x1,x2) plane.

3.3. Critical points and saddle points.

3.3.1. Critical point. An interior point of the domain of a function f(x1, x2, ... , xn) where all first partial
derivatives are zero or where one or more of the first partials does not exist is a critical point of f.

3.3.2. Saddle point. A critical point that is not a local extremum is called a saddle point. We can say that a
differentiable function f(x1, x2, ... , xn) has a saddle point at a critical point (x∗) if we can partition the vector
x* into two subvectors (x1∗, x2∗) where x1∗ ∈ X1 ⊆ Rq and x2∗ ∈ X2 ⊆ Rp (n = p + q) with the following
property

f(x1, x2∗) ≤ f(x1∗, x2∗) ≤ f(x1∗, x2) (8)
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FIGURE 1. Local maximum of function f(x1, x2) = e−(x2
1+x2
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for all x1 ∈ X1 and x2 ∈ X2.

The idea is that a saddle point attains a maximum in one direction and a minimum in the other direction.
Figure 2 shows a function with a saddle point. The function reaches a maximum along the x1 axis and a
minimum along the x2 axis. A contour plot for the function f(x1, x2) = x2

1 − x2
2 in contained in figure 3.

3.3.3. Example problems. Find all the critical points for each of the following functions.
1: y = 16x1 + 12x2 − x2

1 − x2
2

2: y = 25 x1 + 18 x2 − x2
1 − x2

2

3: y = 100 x1 + 76 x2 − 4 x2
1 − 2 x2

2

4: y = 20 x1 + 40 x2 − x2
1 + 2 x1x2 − 2x2

2

5: y = 30 x1 + 20 x2 − 2 x2
1 + 2 x1x2 − x2

2

6: y = 30 x0.4
1 x0.2

2 − 6 x1 − 2 x2

7: y = 20 x0.3
1 x0.5

2 − 5 x1 − 6 x2

4. SECOND DERIVATIVE TEST FOR LOCAL EXTREME VALUES

4.1. A theorem on second derivatives of a function and local extreme values.

Theorem 3. Suppose that f(x1, x2) and its first and second partial derivatives are continuous throughout a disk
centered at (a, b) and that ∂ f

∂x1
(a, b) = ∂ f

∂x2
(a, b) = 0. Then

a: f has a local maximum at (a, b) if ∂2f
∂x2

1
(a, b) < 0 and ∂2f

∂x2
1

∂2f
∂x2

2
−

[
∂2f

∂x1 ∂x2

]2

> 0 at (a, b).
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FIGURE 2. Saddle point of the function f(x1, x2) = x2
1 − x2
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FIGURE 3. Contour plot for function f(x1, x2) = x2
1 − x2

2

-2 -1 0 1 2

-2

-1

0

1

2

We can also write this as f11 < 0 and f11 f22 − f2
12 > 0 at (a, b).

b: f has a local minimum at (a, b) if
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∂2f
∂x2

1
(a, b) > 0 and ∂2f

∂x2
1

∂2f
∂x2

2
−

[
∂2f

∂x1 ∂x2

]2

> 0 at (a, b).

We can also write this as f11 > 0 and f11 f22 − f2
12 > 0 at (a, b).

c: f has a saddle point at (a, b) if ∂2f
∂x2

1

∂2f
∂x2

2
−

[
∂2f

∂x1 ∂x2

]2

< 0 at (a, b).

We can also write this as f11 f22 − f2
12 < 0 at (a, b).

d: The test is inconclusive at (a, b) if ∂2f
∂x2

1

∂2f
∂x2

2
−

[
∂2f

∂x1 ∂x2

]2

= 0 at (a, b).
In this case we must find some other way to determine the behavior of f at (a, b).

The expression ∂2f
∂x2

1

∂2f
∂x2

2
−

[
∂2f

∂x1 ∂x2

]2

is called the discriminant of f. It is sometimes easier to remember
it by writing it in determinant form

∂2f

∂x2
1

∂2f

∂x2
2

−
[

∂2f

∂x1 ∂x2

]2

=
∣∣∣∣

f11 f12

f21 f22

∣∣∣∣ (9)

The theorem says that if the discriminant is positive at the point (a, b), then the surface curves the same
way in all directions; downwards if f11 < 0, giving rise to a local maximum, and upwards if f11 > 0, giving
a local minimum. On the other hand, if the discriminant is negative at (a, b), then the surface curves up in
some directions and down in others and we have a saddle point.

4.2. Example problems.

4.2.1. Example 1.

y = 2 − x2
1 − x2

2

Taking the first partial derivatives we obtain

∂f

∂x1
= − 2 x1 = 0 (10a)

∂f

∂x2
= − 2 x2 = 0 (10b)

⇒ x1 = 0, x2 = 0 (10c)

Thus we have a critical point at (0,0). Taking the second derivatives we obtain

∂2f

∂x2
1

= − 2,
∂2f

∂x1 ∂x2
= 0,

∂2f

∂x2 ∂x1
= 0,

∂2f

∂x2
2

= −2

The discriminant is

∂2f

∂x2
1

∂2f

∂x2
2

−
[

∂2f

∂x1 ∂x2

]2

=
∣∣∣∣
f11 f12

f21 f22

∣∣∣∣ =
∣∣∣∣
−2 0
0 −2

∣∣∣∣ = (−2) (−2) − (0) (0) = 4.

Thus this function has a maximum at the point (0, 0) because ∂2f
∂x2

1
and the discriminant is positive. The

graph of the function is given in figure 4. The level curves are given in figure 5. The tangent plane is given
in figure 6.
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FIGURE 4. Graph of the function 2 − x2
1 − x2
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FIGURE 5. Level curves of the function 2 − x2
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4.2.2. Example 2.
y = 16x1 + 12x2 + x2

1 + x2
2



SIMPLE MULTIVARIATE OPTIMIZATION 7

FIGURE 6. Tangent plane to the function 2 − x2
1 − x2
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Taking the first partial derivatives we obtain

∂f

∂x1
= 16 + 2x1 = 0 (11a)

∂f

∂x2
= 12 + 2x2 = 0 (11b)

These equations are easy to solve because the first equation only depends on x1 and the second equation
only depends on x2. Solving equation 11a, we obtain

16 + 2x1 = 0

⇒ 2x1 = − 16

⇒ x1 = − 8

Solving equation 11b, we obtain

12 + 2x2 = 0

⇒ 2x2 = − 12

⇒ x1 = − 6

Thus we have a critical point at (-8,-6). Taking the second derivatives we obtain

∂2f

∂x2
1

= 2,
∂2f

∂x1 ∂x2
= 0

∂2f

∂x2∂x1
= 0,

∂2f

∂x2
2

= 2

The discriminant is
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∂2f

∂x2
1

∂2f

∂x2
2

−
[

∂2f

∂x1 ∂x2

]2

=
∣∣∣∣
f11 f12

f21 f22

∣∣∣∣ =
∣∣∣∣
2 0
0 2

∣∣∣∣ = (2) (2) − (0) (0) = 4.

Thus this function has a minimum at the point (-8, -6) because ∂2f
∂x2

1
> 0 and the discriminant is positive.

The graph of the function is given in figure 7. The level curves are given in figure 8.

FIGURE 7. Graph of the function f(x1, x2) = 16x1 + 12x2 + x2
1 + x2
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FIGURE 8. Level curves of the function 16x1 + 12x2 + x2
1 + x2
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The tangent plane is given in figure 9.

FIGURE 9. Plane tangent to the function 16x1 + 12x2 + x2
1 + x2
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4.2.3. Example 3.

y = x1x2

Taking the first partial derivatives we obtain

∂f

∂x1
= x2 = 0 (12a)

∂f

∂x2
= x1 = 0 (12b)

Thus this function has a critical value at the point at (0,0). Taking the second derivatives we obtain

∂2f

∂x2
1

= 0,
∂2f

∂x1 ∂x2
= 1

∂2f

∂x2∂x1
= 1,

∂2f

∂x2
2

= 0

The discriminant is

∂2f

∂x2
1

∂2f

∂x2
2

−
[

∂2f

∂x1 ∂x2

]2

=
∣∣∣∣
f11 f12

f21 f22

∣∣∣∣ =
∣∣∣∣
0 1
1 0

∣∣∣∣ = (0) (0) − (1) (1) = −1.

The function has a saddle point at (0,0) because the discriminant is negative at this critical value. The
graph of the function is given in figure 10. The level curves are given in figure 11. The tangent plane is
shown from two different angles in figures 12 and 13.
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FIGURE 10. Graph of the function f(x1, x2) = x1 x2
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FIGURE 11. Let sets of the function f(x1, x2) = x1 x2
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4.2.4. Example 4.

y = 20x1 + 40x2 − x2
1 + 4x1x2 − 2 x2

2

Taking the first partial derivatives we obtain
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FIGURE 12. Saddle point of the function f(x1, x2) = x1 x2
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FIGURE 13. Saddle point of the function f(x1, x2) = x1 x2
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∂f

∂x1
= 20 − 2x1 + 4x2 = 0 (13a)

∂f

∂x2
= 40 + 4x1 − 4x2 = 0 (13b)

Write this system of equations as
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20 − 2x1 + 4x2 = 0 (14a)

40 + 4x1 − 4x2 = 0 (14b)

⇒ 2x1 − 4x2 = 20 (14c)

4x1 − 4x2 = − 40 (14d)

Multiply equation 14c by -2 and add it to equation 14d. First the multiplication

−2(2x1 − 4x2) = − 2(20)

⇒ −4x1 + 8x2 = − 40

Then the addition

−4x1 +8x2 = −40

4x1 −4x2 = −40

−− −− −− −−
4x2 = −80

(15)

Now multiply the result in equation 15 by 1
4

to obtain the system

2x1 −4x2 = 20

x2 = −20
(16)

Now multiply the second equation in 16 by 4 and add to the first equation as follows

2x1 −4x2 = 20

4x2 = −80

−− −− −− −−
2x1 = −60

(17)

Multiplying the result in equation 17 by 1
2 we obtain the system

x1 = −30

x2 = −20
(18)

Thus we have a critical value at (-30, -20). We obtain the second derivatives by differentiating the system
in equation 13

∂2f

∂x2
1

= − 2,
∂2f

∂x1 ∂x2
= 4

∂2f

∂x2 ∂x1
= 4,

∂2f

∂x2
1

= −4

The discriminant is

∂2f

∂x2
1

∂2f

∂x2
2

−
[

∂2f

∂x1 ∂x2

]2

=
∣∣∣∣
f11 f12

f21 f22

∣∣∣∣ =
∣∣∣∣
−2 4
4 −4

∣∣∣∣ = (−2) (−4) − (4) (4) = −8.
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The discriminant is negative and so the function has a saddle point. The graph of the function is given
in figure 14. The level curves are given in figure 15. The tangent plane is shown from two different angles
in figures 16 and 17.

FIGURE 14. Graph of the function f(x1, x2) = 20x1 + 40x2 − x2
1 + 4x1x2 − 2x2
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4.2.5. Example 5.

y = −x1x2 e
−(x2

1 + x2
2)

2

Taking the first partial derivatives we obtain

∂f

∂x1
= − x2 e

−(x2
1 + x2

2)
2 + x2

1x2e
−(x2

1 + x2
2)

2

= x2(x2
1 − 1)e

−(x2
1 + x2

2)
2

∂f

∂x2
= − x1e

−(x2
1 + x2

2)
2 + x1x

2
2 e

−(x2
1 + x2

2)
2

= x1(x2
2 − 1)e

−(x2
1 + x2

2)
2

We set both of the equations equal to zero and solve for critical values of x1 and x2. Because
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FIGURE 15. Level sets of the function f(x1, x2) = 20x1 + 40x2 − x2
1 + 4x1x2 − 2x2
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FIGURE 16. Plane through saddle point of the function f(x1, x2) = 20x1 + 40x2 − x2
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2 6= 0 for all (x1, x2)

the equations can be zero if and only if

x2 (x2
1 − 1) = 0

x1 (x2
2 − 1) = 0
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FIGURE 17. Plane through saddle point of the function f(x1, x2) = 20x1 + 40x2 − x2
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Thus we have critical values at (0, 0), (1, 1), (1, -1), (-1, 1) and (-1, -1).
A graph of the function is contained in figure 18.

FIGURE 18. Graph of the function f(x1, x2) = −x1 x2 e
−(x2
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A set of level curves is contained in figure 19.



16 SIMPLE MULTIVARIATE OPTIMIZATION

FIGURE 19. Level sets of the function f(x1, x2) = −x1 x2 e
−(x2
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We compute the second partial derivatives. The second partial derivative of f with respect to x1 is

fx1 x1 = 3e
−x2

1−x2
2

2 x1x2 − e
−x2

1−x2
2

2 x3
1 x2

The second partial derivative of f with respect to x2 is given by

fx2 x2 = 3e
−x2

1−x2
2

2 x1x2 − e
−x2

1−x2
2

2 x1x
3
2

The cross partial derivative of f with respect to x1 and x2 is

fx2 x1 = −e
−x2

1 − x2
2

2 + e
−x2

1 − x2
2

2 x2
1 + e

−x2
1 − x2

2
2 x2

2 − e
−x2

1 − x2
2

2 x2
1x

2
2

The discriminant ∂2f
∂x2

1

∂2f
∂x2

2
−

[
∂2f

∂x1 ∂x2

]2

is given by
∣∣∣∣
f11 f12

f21 f22

∣∣∣∣ .

We can write this as follows by making the substitutions.

∣∣∣∣∣∣
3e

−x2
1−x2

2
2 x1x2 − e

−x2
1−x2

2
2 x3

1 x2 −e
−x2

1−x2
2

2 + e
−x2

1−x2
2

2 x2
1 + e

−x2
1−x2

2
2 x2

2 − e
−x2

1−x2
2

2 x2
1 x2

2

−e
−x2

1−x2
2

2 + e
−x2

1−x2
2

2 x2
1 + e

−x2
1−x2

2
2 x2

2 − e
−x2

1−x2
2

2 x2
1 x2

2 3e
−x2

1−x2
2

2 x1 x2 − e
−x2

1−x2
2

2 x1 x3
2

∣∣∣∣∣∣

Computing the discriminant we obtain
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Discriminant =


3e

−x2
1−x2

2
2 x1x2 − e

−x2
1−x2

2
2 x3

1 x2





3e

−x2
1−x2

2
2 x1x2 − e

−x2
1−x2

2
2 x1 x3

2




−


−e

−x2
1−x2

2
2 + e

−x2
1−x2

2
2 x

2
1 + e

−x2
1−x2

2
2 x

2
2 − e

−x2
1−x2

2
2 x

2
1 x

2
2





−e

−x2
1−x2

2
2 + e

−x2
1−x2

2
2 x

2
1 + e

−x2
1−x2

2
2 x

2
2 − e

−x2
1−x2

2
2 x

2
1x

2
2




Multiplying out the first term we obtain

term 1 = e−x2
1−x2

2 x2
1 (−3 + x2

1) x2
2 (−3 + x2

2)

= e−x2
1−x2

2
(
9 x2

1 x2
2 − 3 x4

1 x2
2 − 3 x2

1 x4
2 + x4

1 x4
2

)

Multiplying out the second term we obtain

term 2 = e−x2
1−x2

2 (−1 + x2
1)

2 (−1 + x2
2)

2

= e−x2
1−x2

2
(
1 − 2x2

1 + x4
1 − 2x2

2 + 4x2
1 x2

2 − 2x4
1 x2

2 + x4
2 − 2x2

1 x4
2 + x4

1 x4
2

)

Subtracting term 2 from term 1 we obtain

Discriminant = e−x2
1−x2

2
(
9 x2

1 x2
2 − 3 x4

1 x2
2 − 3 x2

1 x4
2 + x4

1 x4
2

)

+
(
−1 + 2x2

1 − x4
1 + 2x2

2 − 4x2
1 x2

2 + 2x4
1 x2

2 − x4
2 + 2x2

1 x4
2 − x4

1 x4
2

)

= e−x2
1−x2

2
(
−1 + 5x2

1 x2
2 − x4

1 x2
2 − x2

1 x4
2 + 2x2

1 + 2x2
2 − x4

1 − x4
2

)

Because e−x2
1 − x2

2 > 0 for all (x1, x2), we need only consider the term in parentheses to check the sign
of the discriminant. Consider each of the cases in turn.

a: Consider the critical point (0, 0). In the case the relevant term is given by
(
−1 + 5x2

1 x2
2 − x4

1 x2
2 − x2

1 x4
2 + 2x2

1 + 2x2
2 − x4

1 − x4
2

)
= −1

This is negative so this is a saddle point. We can see this in figure 20.

b: Consider the critical point (1, -1). In the case the relevant term is given by
(
−1 + 5x2

1 x2
2 − x4

1 x2
2 − x2

1 x4
2 + 2x2

1 + 2x2
2 − x4

1 − x4
2

)
= 4

This is positive. The second derivative of f with respect to x1 evaluated at (1, -1) is given by

fx1x1 =3e
−x2

1−x2
2

2 x1x2 − e
−x2

1−x2
2

2 x3
1x2

=e
−x2

1−x2
2

2
(
3x1x2 − x3

1x2

)

=e−1 (−3 + 1) =
−2
e

< 0.

Given that the f11 is negative, this point is a local maximum. We can see this in figure 21.

c: Consider the critical point (-1, 1). In the case the relevant term is given by
(
−1 + 5x2

1 x2
2 − x4

1 x2
2 − x2

1 x4
2 + 2x2

1 + 2x2
2 − x4

1 − x4
2

)
= 4

This is positive. The second derivative of x with respect to x1 evaluated at (1, -1) is given by
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FIGURE 20. Saddle point of the function f(x1, x2) = −x1x2 e
−(x2

1 + x2
2)

2

-2

0

2

x1

-2

0

2

x2

-0.2

-0.1

0

0.1

0.2

f Hx1,x2L

-2

0

2

x1

fx1x1 =3e
−x2

1−x2
2

2 x1x2 − e
−x2

1−x2
2

2 x3
1x2

=e
−x2

1−x2
2

2
(
3x1x2 − x3

1x2

)

=e−1 (−3 + 1) =
−2
e

< 0.

Given that f11 is negative, this point is a local maximum. We can see this in figure 22.

d: Consider the critical point (1, 1). In the case the relevant term is given by

(
−1 + 5x2

1 x2
2 − x4

1 x2
2 − x2

1 x4
2 + 2x2

1 + 2x2
2 − x4

1 − x4
2

)
= 4

This is positive. The second derivative of f with respect to x1 evaluated at (1, 1) is given by

fx1x1 =3e
−x2

1−x2
2

2 x1x2 − e
−x2

1−x2
2

2 x3
1x2

=e
−x2

1−x2
2

2
(
3x1x2 − x3

1x2

)

=e−1 (3 − 1) =
2
e

> 0.

Given that the f11 derivative is positive, this point is a local minimum. We can see this in figure
23.
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FIGURE 21. Local maximum of the function f(x1, x2) = −x1 x2 e
−(x2

1 + x2
2)

2

-2

0

2

x1

-2

0

2

x2

-0.2

0

0.2

f Hx1,x2L

-2

0

2

x1

FIGURE 22. Local maximum of the function f(x1, x2) = −x1x2 e
−(x2

1 + x2
2)

2

-2

0

2

x1

-2

0

2

x2

-0.2

0

0.2

f Hx1,x2L

-2

0

2

x1

e: Consider the critical point (-1, -1). In the case the relevant term is given by
(
−1 + 5x2

1 x2
2 − x4

1 x2
2 − x2

1 x4
2 + 2x2

1 + 2x2
2 − x4

1 − x4
2

)
= 4
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FIGURE 23. Local minimum of the function f(x1, x2) = −x1 x2 e
−(x2

1 + x2
2)

2

-2

0

2x1
-2

0

2

x2

-0.2

0

0.2

f Hx1,x2L

-2

0

2x1

This is positive. The second derivative of f with respect to x1 evaluated at (-1, -1) is given by

fx1x1 =3e
−x2

1−x2
2

2 x1 x2 − e
−x2

1−x2
2

2 x3
1 x2

=e
−x2

1−x2
2

2
(
3x1 x2 − x3

1 x2

)

=e−1 (3 − 1) =
2
e

> 0.

Given that the f11 derivative is positive, this point is a local minimum. We can see this in figure
24.

FIGURE 24. Local minimum of the function f(x1, x2) = −x1x2 e
−(x2

1 + x2
2)

2

-2

0

2
x1

-2

0

2

x2

-0.2

0

0.2

f Hx1,x2L

-2

0

2
x1
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4.3. In-class problems.

a: y = 2x2
1 + x2

2 − x1x2 − 7 x2

b: y = x2
2 − x1x2 + 2x1 + x2 + 1

c: y = 16 x1 + 10 x2 − 2 x2
1 + x1x2 − x2

2

d: y = 4 x1x2 − 2 x2
1 − x4

2

e: y = 10 x0.4
1 x0.2

2 − x1 − 2 x2

5. TAYLOR SERIES

5.1. Definition of a Taylor series. Let f be a function with derivatives of all orders throughout some inter-
val containing a as an interior point. The Taylor series generated by f at x = a is

∞∑

k=0

fk(a)

k!
(x − a)k = f(a) + f ′a)(x − a) +

f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3 + · · · +

fn(a)

n!
(x − a)n + · · · (19)

5.2. Definition of a Taylor polynomial. The linearization of a differentiable function f at a point a is the
polynomial

P1(x) = f(a) + f ′(a)(x − a) (20)

For a given a, f(a) and f ′(a) will be constants and we get a linear equation in x. This can be extended to
higher order terms as follows.

Let f be a function with derivatives of order k for k = 1, 2, ... , N in some interval containing a as an
interior point. Then for any integer n from 0 through N, the Taylor polynomial of order n generated by f
at x = a is the polynomial

Pn(x) = f(a) + f ′(a) (x − a) +
f ′′(a)

2!
(x − a)2 + · · · +

fk(a)
k!

(x − a)k + · · · +
fn(a)

n!
(x − a)n (21)

That is, the Taylor polynomial of order n is the Taylor series truncated with the term containing the nth
derivative of f. This allows us to approximate a function with polynomials of higher orders.

5.3. Taylor’s theorem.

Theorem 4. If a function f and its first n derivatives f ′, f ′′, . . . , f (n) are continuous on [a, b] or on [b, a], and f(n) is
differentiable on (a, b) or (b, a), then there exists a number c between a and b such that

f(b) = f(a) + f ′(a) (b − a) +
f ′′(a)

2!
(b − a)2 + . . . +

fn(a)
n!

(b − a)n +
fn+1(c)
(n + 1)!

(b − a)n+1 (22)

What this says is that we can approximate the function f at the point b by an nth order polynomial

defined at the point a with an error term defined by fn+1 (c)
(n+1)! (b − a)n+1. In using Taylor’s theorem we

usually think of a as being fixed and treat b as an independent variable. If we replace b with x we obtain
the following corollary.

Corollary 1. If a function f has derivatives of all orders in an open interval I containing a, then for each
positive integer n and for each x in I,
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f(x) = f(a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · · +

fn(a)
n!

(x − a)n + Rn(x) ,

where

Rn(x) =
fn+1(c)
(n + 1)!

(x − a)n+1 for some c between a and x.

(23)

If Rn(x) → 0 as n →∞ for all x in I, then we say that the Taylor series generated by f at x = a converges to
f on I.

6. PROOF OF THE SECOND DERIVATIVE TEST FOR LOCAL EXTREME VALUES

Let f(x1, x2) have continuous partial derivatives in the open region R containing a point P(a, b) where
∂f
∂x1

= ∂f
∂x2

= 0. Let h and k be increments small enough to put the point S(a+h, b+k) and the line segment
joining it to P inside R. We parameterize the line segment PS as

x1 = a + th, x2 = b + tk, 0 ≤ t ≤ 1. (24)
Define F(t) as f(a+th, b+tk). In this way F tracks the movement of the function f along the line segment

from P to S. Now differentiate F with respect to t using the chain rule to obtain

F ′(t) =
∂f

∂x1

dx1

dt
+

∂f

∂x2

dx2

dt
= f1h + f2k . (25)

Because ∂f
∂x1

and ∂f
∂x2

are differentiable, F’ is a differentiable function of t and we have

F ′′(t) = ∂F ′

∂x1

dx1
dt

+ ∂F ′

∂x2

dx2
dt

= ∂
∂x1

(f1 h + f2k) h + ∂
∂x2

(f1 h + f2k) k

= h2 f11 + 2 hk f12 + k2 f22,

(26)

where we use the fact that f12 = f21. By the definition of F, which is defined over the interval 0 ≤ t ≤ 1,
and the fact that f is continuous over the open region R, it is clear that F and F ′ are continuous on [0, 1] and
that F’ is differentiable on (0, 1). We can then apply Taylor’s formula with n = 2 and a = 0. This will give

F (1) = F (0) + F ′(0) (1 − 0) + F ′′(c)
(1 − 0)2

2
(27)

Simplifying we obtain

F (1) = F (0) + F ′(0) (1 − 0) + F ′′(c) (1 − 0)2

2

= F (0) + F ′(0) + F ′′(c)
2

(28)

for some c between 0 and 1. Now write equation 28 in terms of f. Since t = 1 in equation 28, we obtain f
at the point (a+h, b+k) or

f(a + h, b + k) = f(a, b) + hf1(a, b) + kf2 (a, b) + 1
2 (h2f11 + 2 h k f12 + k2f22)|(a+ch, b+ck) (29)

Because ∂f
∂x1

= ∂f
∂x2

= 0 at (a, b), equation 29 reduces to

f(a + h, b + k) − f(a, b) =1
2 (h2 f11 + 2 h k f12 + k2 f22)|(a+ch, b+ck) (30)

The presence of an extremum of f at the point (a, b) is determined by the sign of the left hand side of
equation 30, or f(a+b, b+k) - f(a, b). If [f(a + h, b + k) − f(a, b)] < 0 then the point is a maximum. If
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[f(a + h, b + k) − f(a, b)] > 0, the point is a minimum. So if the left hand side (lhs) of equation 20 < 0, we
have a maximum, and if the left hand side of equation 20 > 0, we have a minimum. Specifically,

lhs < 0, f is at a maximum

lhs > 0, f is at a minimum

By equation 30 this is the same as the sign of

Q(c) = (h2f11 + 2 h k f12 + k2 f22)|(a + ch, b+ck) (31)
If Q(0) 6= 0, the sign of Q(c) will be the same as the sign of Q(0) for sufficiently small values of h and k.

We can predict the sign of

Q(0) = h2 f11 (a, b) + 2 h k f12 (a, b) + k2 f22 (a, b) (32)
from the signs of f11 and f11 f22 − f 2

12 at the point (a, b). Multiply both sides of equation 32 by f11 and
rearrange to obtain

f11 Q(0) = f11 (h2 f11 + 2 h k f12 + k2 f22)

= f 2
11 h2 + 2 h k f11 f12 + k2 f11 f22

= f 2
11 h2 + 2 h k f11 f12 + k2 f 2

12 − k2 f 2
12 + k2 f11 f22

= ( h f11 + k f12 )2 − k2 f 2
12 + k2 f11 f22

= ( h f11 + k f12 )2 + ( f11 f22 − f 2
12 ) k2

(33)

Now from equation 33 we can see that
a: If f11 < 0 and f11 f22 − f 2

12 > 0 at (a, b), then Q(0) < 0 for all sufficiently small values of h and
k. This is clear because the right hand side of equation 33 will be positive if the discriminant is
positive. With the right hand side positive, the left hand side must be positive which implies that
with f11 < 0, Q(0) must also be negative. Thus f has a local maximum at (a, b) because f evaluated
at points close to (a, b) is less than f at (a, b).

b: If f11 > 0 and f11 f22 − f 2
12 > 0 at (a, b), then Q(0) > 0 for all sufficiently small values of h

and k. This is clear because the right hand side of equation 33 will be positive if the discriminant is
positive. With the right hand side positive, the left hand side must be positive which implies that
with f11 > 0, Q(0) must also be positive. Thus f has a local minimum at (a, b) because f evaluated
at points close to (a, b) is greater than f at (a, b).

c: If f11 f22 − f 2
12 < 0 at (a, b), there are combinations of arbitrarily small nonzero values of h and

k for which Q(0) > 0 and other values for which Q(0) < 0. Arbitrarily close to the point P0(a, b,
f(a, b)) on the surface y = f(x1, x2) there are points above P0 and points below P0, so f has a saddle
point at (a, b).

d: If f11 f22 − f 2
12 = 0 , another test is needed. The possibility that Q(0) can be zero prevents us

from drawing conclusions about the sign of Q(c).


